Αριθμητική Γραμμική Άλγεβρα Ι (ΑΑ3): Διαφορά μεταξύ των αναθεωρήσεων
Από Wiki Τμήματος Μαθηματικών
μ (Αντικατάσταση κειμένου - «το Σύστημα Διαχείρισης Μάθησης» σε «την Πλατφόρμα Ασύγχρονης Εκπαίδευσης») |
Χωρίς σύνοψη επεξεργασίας |
||
(3 ενδιάμεσες αναθεωρήσεις από τον ίδιο χρήστη δεν εμφανίζεται) | |||
Γραμμή 1: | Γραμμή 1: | ||
[[ | * [[Numerical Linear Algebra I (ΑΑ3)|English version]] | ||
{{Course-Graduate-Top-GR}} | |||
{{Menu-OnAllPages-GR}} | |||
=== Γενικά === | === Γενικά === |
Τελευταία αναθεώρηση της 12:09, 15 Ιουνίου 2023
- English version
- Περιγράμματα Μεταπτυχιακών Μαθημάτων
- Τροποποίηση Περιγράμματος (η δυνατότητα αυτή απευθύνεται αποκλειστικά στα μέλη ΔΕΠ του Τμήματος)
- Τμήμα Μαθηματικών
- Αποθήκευση ως PDF ή Εκτύπωση (για αποθήκευση ως PDF, κάντε την σχετική επιλογή στη λίστα εκτυπωτών που θα εμφανιστεί)
Γενικά
Σχολή | Σχολή Θετικών Επιστημών |
---|---|
Τμήμα | Τμήμα Μαθηματικών |
Επίπεδο Σπουδών | Μεταπτυχιακό |
Κωδικός Μαθήματος | ΑΑ3 |
Εξάμηνο | 1 |
Τίτλος Μαθήματος | ΑΡΙΘΜΗΤΙΚΗ ΓΡΑΜΜΙΚΗ ΆΛΓΕΒΡΑ Ι |
Αυτοτελείς Διδακτικές Δραστηριότητες | Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 7.5) |
Τύπος Μαθήματος | Ειδικού υποβάθρου |
Προαπαιτούμενα Μαθήματα | |
Γλώσσα Διδασκαλίας και Εξετάσεων | Ελληνική |
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus | Ναι (στην Αγγλική γλώσσα) |
Ηλεκτρονική Σελίδα Μαθήματος (URL) | Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων. |
Μαθησιακά Αποτελέσματα
Μαθησιακά Αποτελέσματα | Μετά την επιτυχή ολοκλήρωση του μαθήματος, οι φοιτητές θα είναι σε θέση:
|
---|---|
Γενικές Ικανότητες |
|
Περιεχόμενο Μαθήματος
Θεωρία Perron-Frobenius για μη Αρνητικούς Πίνακες: Μη Αναγώγιμοι (Irreducible) πίνακες, Κυκλικοί (cyclic) και Πρωταρχικοί (primitive) πίνακες, Αναγώγιμοι (reducible) πίνακες. Επεκτάσεις της Θεωρίας Perron-Frobenius, M-πίνακες, Εφαρμογές της Θεωρίας Perron-Frobenius. Μέθοδοι Ελαχιστοποίησης για την επίλυση γραμμικών συστημάτων: Μέθοδος Συζυγών Κλίσεων, Θεωρία Σύγκλισης, Ανάλυση Σφαλμάτων, Τεχνικές Προρρύθμισης, Προρρυθμισμένες μέθοδοι Συζυγών Κλίσεων, Εφαρμογές.
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
Τρόπος Παράδοσης | Στην τάξη | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών | |||||||||||
Οργάνωση Διδασκαλίας |
| ||||||||||
Αξιολόγηση Φοιτητών | Γραπτή εξέταση - Προφορική εξέταση |
Συνιστώμενη Βιβλιογραφία
- Αριθμητική Γραμμική Άλγεβρα, Β. Δουγαλής, Δ. Νούτσος, Α. Χατζηδήμος, Τυπογραφείο Πανεπιστημίου Ιωαννίνων.
- Προσωπικές διαφάνειες προβολής.