Introduction to Expert Systems (MAE846): Διαφορά μεταξύ των αναθεωρήσεων
Από Wiki Τμήματος Μαθηματικών
(Νέα σελίδα με '=== General === {| class="wikitable" |- ! School | School of Science |- ! Academic Unit | Department of Mathematics |- ! Level of Studies | Undergraduate |- ! Course Code | MAE846 |- ! Semester | 8 |- ! Course Title | Introduction to Expert Systems |- ! Independent Teaching Activities | Lectures (Weekly Teaching Hours: 3, Credits: 6) |- ! Course Type | Special Background |- ! Prerequisite Courses | - Logic Programming, Data Structure |- ! Language of Instruction...') |
Χωρίς σύνοψη επεξεργασίας |
||
(10 ενδιάμεσες αναθεωρήσεις από τον ίδιο χρήστη δεν εμφανίζεται) | |||
Γραμμή 1: | Γραμμή 1: | ||
* [[Εισαγωγή στα Έμπειρα Συστήματα (ΜΑΕ846)|Ελληνική Έκδοση]] | |||
{{Course-UnderGraduate-Top-EN}} | |||
{{Menu-OnAllPages-EN}} | |||
=== General === | === General === | ||
{| class="wikitable" | {| class="wikitable" | ||
Γραμμή 35: | Γραμμή 39: | ||
|- | |- | ||
! Prerequisite Courses | ! Prerequisite Courses | ||
| | | | ||
Logic Programming, Data Structure | Logic Programming, Data Structure | ||
|- | |- | ||
Γραμμή 47: | Γραμμή 51: | ||
|- | |- | ||
! Course Website (URL) | ! Course Website (URL) | ||
| | | See [https://ecourse.uoi.gr/ eCourse], the Learning Management System maintained by the University of Ioannina. | ||
|} | |} | ||
=== Learning Outcomes === | === Learning Outcomes === | ||
{| class="wikitable" | {| class="wikitable" | ||
Γραμμή 64: | Γραμμή 69: | ||
* Logic Programming for knowledge representation. | * Logic Programming for knowledge representation. | ||
After completing the course the student can handle: | After completing the course the student can handle: | ||
* theoretical documentation of problems | |||
* solving exercises | |||
* implementations-applications | |||
|- | |- | ||
! General Competences | ! General Competences | ||
Γραμμή 73: | Γραμμή 78: | ||
* Implementation- Consolidation | * Implementation- Consolidation | ||
|} | |} | ||
=== Syllabus === | === Syllabus === | ||
* Ιntroduction to Expert Systems | * Ιntroduction to Expert Systems | ||
Γραμμή 118: | Γραμμή 124: | ||
|} | |} | ||
=== Attached Bibliography === | === Attached Bibliography === | ||
<!-- In order to edit the bibliography, visit the webpage --> | |||
<!-- https://wiki.math.uoi.gr/index.php/%CE%A0%CF%81%CF%8C%CF%84%CF%85%CF%80%CE%BF:MAE846-Biblio --> | |||
See the official [https://service.eudoxus.gr/public/departments#20 Eudoxus site] or the [https://cloud.math.uoi.gr/index.php/s/62t8WPCwEXJK7oL local repository] of Eudoxus lists per academic year, which is maintained by the Department of Mathematics. Books and other resources, not provided by Eudoxus: | |||
{{MAE846-Biblio}} |
Τελευταία αναθεώρηση της 12:39, 15 Ιουνίου 2023
- Ελληνική Έκδοση
- Undergraduate Courses Outlines
- Outline Modification (available only for faculty members)
- Department of Mathematics
- Save as PDF or Print (to save as PDF, pick the corresponding option from the list of printers, located in the window which will popup)
General
School |
School of Science |
---|---|
Academic Unit |
Department of Mathematics |
Level of Studies |
Undergraduate |
Course Code |
MAE846 |
Semester |
8 |
Course Title |
Introduction to Expert Systems |
Independent Teaching Activities |
Lectures (Weekly Teaching Hours: 3, Credits: 6) |
Course Type |
Special Background |
Prerequisite Courses |
Logic Programming, Data Structure |
Language of Instruction and Examinations |
Greek |
Is the Course Offered to Erasmus Students |
Yes (in English) |
Course Website (URL) | See eCourse, the Learning Management System maintained by the University of Ioannina. |
Learning Outcomes
Learning outcomes |
The goal of this course is the deeper understanding of PROLOG. During the course a detailed examination of the following topics are done:
After completing the course the student can handle:
|
---|---|
General Competences |
|
Syllabus
- Ιntroduction to Expert Systems
- Main Features of Expert Systems, classic examples
- Knowledge acquisition and verification, knowledge representation, inference and interpretation, consistency and uncertainties.
- Inference techniques
- Rule-based forward chaining Expert Systems
- Rule-based backward chaining Expert Systems
- Rule-based Expert Systems
- Expert Systems tools
- Users Interface
- Machine learning, decision making machines, Expert Systems examples.
Teaching and Learning Methods - Evaluation
Delivery |
Face to face | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Use of Information and Communications Technology | Yes , Use of Natural Language and Mathematical Problems Processing Laboratory | ||||||||||
Teaching Methods |
| ||||||||||
Student Performance Evaluation |
Final test |
Attached Bibliography
See the official Eudoxus site or the local repository of Eudoxus lists per academic year, which is maintained by the Department of Mathematics. Books and other resources, not provided by Eudoxus:
- Γεώργιος Ι. Δουκίδης, Μάριος Κ. Αγγελίδης, "Έμπειρα συστήματα, τεχνητή νοημοσύνη και LISP", ISBN 960-08-0004-9, ISBN-13 978-960-08-0004-3
- Σπύρος Τζαφέστας, "ΕΜΠΕΙΡΑ ΣΥΣΤΗΜΑΤΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ", ISBN: - (Κωδικός Βιβλίου στον Εύδοξο: 89871)
- Παναγιωτόπουλος Ιωάννης - Χρήστος Π., "Νέες Μορφές Τεχνολογίας - Γενικευμένα Αυτόματα Συστήματα - Έμπειρα Συστήματα Turbo Prolog"