Λογισμός Μιγαδικών Συναρτήσεων και Εφαρμογές (ΕΜ8): Διαφορά μεταξύ των αναθεωρήσεων

Από Wiki Τμήματος Μαθηματικών
Χωρίς σύνοψη επεξεργασίας
 
(3 ενδιάμεσες αναθεωρήσεις από τον ίδιο χρήστη δεν εμφανίζεται)
Γραμμή 1: Γραμμή 1:
[[Περιγράμματα Μεταπτυχιακών Μαθημάτων]] - [https://math.uoi.gr Τμήμα Μαθηματικών]
* [[Calculus of Complex Functions and Applications (EM8)|English version]]
{{Course-Graduate-Top-GR}}
{{Menu-OnAllPages-GR}}


=== Γενικά ===
=== Γενικά ===

Τελευταία αναθεώρηση της 12:10, 15 Ιουνίου 2023

Γενικά

Σχολή Σχολή Θετικών Επιστημών
Τμήμα Τμήμα Μαθηματικών
Επίπεδο Σπουδών Μεταπτυχιακό
Κωδικός Μαθήματος EM8
Εξάμηνο 1
Τίτλος Μαθήματος ΛΟΓΙΣΜΟΣ ΜΙΓΑΔΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΚΑΙ ΕΦΑΡΜΟΓΕΣ
Αυτοτελείς Διδακτικές Δραστηριότητες Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 7.5)
Τύπος Μαθήματος Ειδικού υπόβαθρου
Προαπαιτούμενα Μαθήματα
Γλώσσα Διδασκαλίας και Εξετάσεων Ελληνική
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus Ναι (στην Αγγλική γλώσσα)
Ηλεκτρονική Σελίδα Μαθήματος (URL) Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων.

Μαθησιακά Αποτελέσματα

Μαθησιακά Αποτελέσματα Στο τέλος του μαθήματος ο φοιτητής πρέπει να είναι σε θέση να:
  • να δώσει μια περιγραφή των εννοιών της αναλυτικής συνάρτησης και της αρμονικής συνάρτησης και να εξηγήσει το ρόλο των εξισώσεων Cauchy-Riemann.
  • να εξηγήσει την έννοια της σύμμορφης απεικόνισης, να περιγράψει τη σχέση της με τις αναλυτικές συναρτήσεις και να γνωρίζει τις ιδιότητες και απεικονίσεις των στοιχειωδών συναρτήσεων.
  • να περιγράψει τις ιδιότητες των μετασχηματισμών Möbius και να γνωρίζει πώς να τις χρησιμοποιήσουμε στις σύμμορφες απεικονίσεις.
  • να υπολογίζει μιγαδικά ολοκληρώματα.
  • να χρησιμοποιεί το θεώρημα Cauchy, την ενοποιημένη φόρμουλα Cauchy και μερικές από τις συνέπειές τους.
  • να αναλύει απλές ακολουθίες και σειρές συναρτήσεων σε σχέση με την ομοιόμορφη σύγκλιση, να περιγράφει τις ιδιότητες σύγκλισης μιας δυναμοσειράς και να προσδιορίζει τη σειρά Taylor ή τη σειρά Laurent μιας αναλυτικής συνάρτησης σε μια δεδομένη περιοχή.
  • να δίνει μια περιγραφή των βασικών ιδιοτήτων των ιδιομορφιών αναλυτικών συναρτήσεων και να είναι δυνατόν να προσδιορίζεται η τάξη των ριζών και των πόλων, να υπολογίζονται τα ολοκληρωτικά υπολείμματα.
  • να χρησιμοποιεί τη θεωρία, τις μεθόδους και τις τεχνικές του μαθήματος για την επίλυση μαθηματικών προβλημάτων.
Γενικές Ικανότητες
  • Προσαρμογή σε νέες καταστάσεις
  • Λήψη αποφάσεων
  • Αυτόνομη εργασία
  • Ομαδική εργασία

Περιεχόμενο Μαθήματος

Μιγαδικοί αριθμοί και η τοπολογία του ℂ. Συναρτήσεις μιας μιγαδικής μεταβλητής, όρια, συνέχεια και διαφόριση. Οι εξισώσεις Cauchy-Riemann. Αναλυτικές και αρμονικές συναρτήσεις. Σύμμορφες απεικονίσεις. Οι στοιχειώδεις συναρτήσεις από το ℂ στο ℂ, ιδιαίτερα οι μετασχηματισμοί Möbius και η εκθετική συνάρτηση. Λύση προβλημάτων συνοριακών τιμών στο επίπεδο για την εξίσωση Laplace χρησιμοποιώντας σύμμορφες απεικονίσεις. Μιγαδική ολοκλήρωση. Το θεώρημα Cauchy. Η αρχή μεγίστου για αναλυτικές και αρμονικές συναρτήσεις. Η φόρμουλα του Poisson. Ομοιόμορφη σύγκλιση και αναλυτικότητα. Δυναμοσειρές. Σειρές Taylor και Laurent με εφαρμογές. Ρίζες και απομονωμένες ιδιομορφίες. Υπολογισμός υπολοίπων με εφαρμογές. Το θεώρημα Rouché. Σύντομη σύνδεση με σειρές και ολοκληρώματα Fourier. Το πρόβλημα Riemann-Hilbert.

Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση

Τρόπος Παράδοσης Στη τάξη
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών
Οργάνωση Διδασκαλίας
Δραστηριότητα Φόρτος Εργασίας Εξαμήνου
Διαλέξεις 39
Αυτοτελής Μελέτη 78
Επίλυση Ασκήσεων - Εργασίες 70.5
Σύνολο Μαθήματος 187.5
Αξιολόγηση Φοιτητών
  • Εβδομαδιαίες ασκήσεις
  • Τελική εργασία

Συνιστώμενη Βιβλιογραφία

  • ΜΙΓΑΔΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, Κωδικός Βιβλίου στον Εύδοξο: 226, Έκδοση: 1η/2005, Συγγραφείς: CHURCHILL R., BROWN J., ISBN: 960-7309-41-3, Τύπος: Σύγγραμμα, Διαθέτης (Εκδότης): ΙΔΡΥΜΑ ΤΕΧΝΟΛΟΓΙΑΣ & ΕΡΕΥΝΑΣ-ΠΑΝΕΠΙΣΤΗΜΙΑΚΕΣ ΕΚΔΟΣΕΙΣ ΚΡΗΤΗΣ
  • ΜΙΓΑΔΙΚΕΣ ΜΕΤΑΒΛΗΤΕΣ, Κωδικός Βιβλίου στον Εύδοξο: 12404786, Έκδοση: 1η/2011, Συγγραφείς: ABLOWITZ MARK J., ΦΩΚΑΣ ΑΘΑΝΑΣΙΟΣ Σ., ISBN: 978-960-524-337-1, Τύπος: Σύγγραμμα, Διαθέτης (Εκδότης): ΙΔΡΥΜΑ ΤΕΧΝΟΛΟΓΙΑΣ & ΕΡΕΥΝΑΣ-ΠΑΝΕΠΙΣΤΗΜΙΑΚΕΣ ΕΚΔΟΣΕΙΣ ΚΡΗΤΗΣ
  • Αναλυτικές συναρτήσεις και μερικές εφαρμογές τους, Κωδικός Βιβλίου στον Εύδοξο: 12166, Έκδοση: 2η έκδ./1998, Συγγραφείς: Τερσένοβ Σάββας, ISBN: 978-960-7140-66-1, Τύπος: Σύγγραμμα, Διαθέτης (Εκδότης): ΔΙΑΥΛΟΣ Α.Ε. ΕΚΔΟΣΕΙΣ ΒΙΒΛΙΩΝ
  • Μιγαδικές συναρτήσεις, Κωδικός Βιβλίου στον Εύδοξο: 11116, Έκδοση: 1η έκδ./1996, Συγγραφείς: Παντελίδης Γεώργιος Ν., Κραββαρίτης Δημήτρης Χ., Νασόπουλος Β., ISBN: 960-431-358-4, Τύπος: Σύγγραμμα, Διαθέτης (Εκδότης): Ζήτη Πελαγία & Σια Ι.Κ.Ε.
  • Μιγαδικές συναρτήσεις, Κωδικός Βιβλίου στον Εύδοξο: 11115, Έκδοση: 1η έκδ./2008, Συγγραφείς: Ξένος Θανάσης Π., ISBN: 978-960-456-092-9, Τύπος: Σύγγραμμα, Διαθέτης (Εκδότης): Ζήτη Πελαγία & Σια Ι.Κ.Ε.