Αλγεβρική Τοπολογία II (ΓΕ6): Διαφορά μεταξύ των αναθεωρήσεων
Από Wiki Τμήματος Μαθηματικών
Χωρίς σύνοψη επεξεργασίας |
|||
(3 ενδιάμεσες αναθεωρήσεις από τον ίδιο χρήστη δεν εμφανίζεται) | |||
Γραμμή 1: | Γραμμή 1: | ||
[[ | * [[Algebraic Topology II (ΓΕ6)|English version]] | ||
{{Course-Graduate-Top-GR}} | |||
{{Menu-OnAllPages-GR}} | |||
=== Γενικά === | === Γενικά === |
Τελευταία αναθεώρηση της 12:02, 15 Ιουνίου 2023
- English version
- Περιγράμματα Μεταπτυχιακών Μαθημάτων
- Τροποποίηση Περιγράμματος (η δυνατότητα αυτή απευθύνεται αποκλειστικά στα μέλη ΔΕΠ του Τμήματος)
- Τμήμα Μαθηματικών
- Αποθήκευση ως PDF ή Εκτύπωση (για αποθήκευση ως PDF, κάντε την σχετική επιλογή στη λίστα εκτυπωτών που θα εμφανιστεί)
Γενικά
Σχολή | Σχολή Θετικών Επιστημών |
---|---|
Τμήμα | Τμήμα Μαθηματικών |
Επίπεδο Σπουδών | Προπτυχιακό |
Κωδικός Μαθήματος | ΓΕ6 |
Εξάμηνο | 1 |
Τίτλος Μαθήματος | ΑΛΓΕΒΡΙΚΗ ΤΟΠΟΛΟΓΙΑ IΙ |
Αυτοτελείς Διδακτικές Δραστηριότητες | Διάφορες μορφές διδασκαλίας (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 7.5) |
Τύπος Μαθήματος | Ειδικού Υπόβαθρου, Ανάπτυξης ιδιαίτερων Δεξιοτήτων στην τοπολογία - γεωμετρία - άλγεβρα |
Προαπαιτούμενα Μαθήματα | ΓΕ5 Αλγεβρική Τοπολογία I |
Γλώσσα Διδασκαλίας και Εξετάσεων | Ελληνική |
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus | Ναι (στην Αγγλική γλώσσα) |
Ηλεκτρονική Σελίδα Μαθήματος (URL) | Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων. |
Μαθησιακά Αποτελέσματα
Μαθησιακά Αποτελέσματα | Η εμφάνιση της Αλγεβρικής Τοπολογίας ξεκινά με την έρευνα του H. Poincare. Την πρώτη περίοδο οι εφαρμογές του κλάδου περιορίζονταν στην αλγεβρική γεωμετρία αλλά αυτό άλλαξε δραματικά το 1930 με τη γέννηση της διαφορικής τοπολογίας από τους G. De Rham και E. Cartan και τη θεωρία ομοτοπίας από τους W. Hurewicz και H. Hopf. Η επιρροή της αρχίζει να διαχέεται σε όλο και περισσότερους κλάδους ώστε να πάρει μια κεντρική θέση στα μαθηματικά. Το μάθημα αυτό αποτελεί συνέχεια του μαθήματος ΓΕ5 Αλγεβρική Τοπολογία Ι και αποσκοπεί στη μελέτη και απόκτηση δεξιοτήτων για την επίλυση προχωρημένων προβλημάτων από την τοπολογία - γεωμετρία. Η βασική ιδέα είναι η επικόλληση αλγεβρικών δομών στους τοπολογικούς χώρους και απεικονίσεων μεταξύ τους ώστε η άλγεβρα να παραμένει αναλλοίωτη κάτω από βασικούς τοπολογικούς μετασχηματισμούς. Σκοπός είναι η αναγωγή δύσκολων γεωμετρικών προβλημάτων σε ομοτοπικά. Μελέτη ομοτοπίας και παρουσίαση εργαλείων για υπολογισμούς. Και μελέτη του ερωτήματος «Πως θα μπορούσαμε να ξεχωρίσουμε τοπολογικούς χώρους μεταξύ τους;» Συγκεκριμένα: Υπολογισμοί ομολογιακών προτύπων και συνομολογιακών δακτυλίων διάφορων σημαντικών τοπολογικών χώρων. Σχέση ομολογίας συνομολογίας και ομοτοπίας. Υπολογισμοί βασικών ομοτοπικών και ομολογιακών ακολουθιών. |
---|---|
Γενικές Ικανότητες |
|
Περιεχόμενο Μαθήματος
Πολύεδρα, simplicial και singular θεωρία ομολογίας, Θεώρημα σταθερού σημείου Lefschetz, συνομολογία και γινόμενα, θεωρήματα Künneth και universal coefficient, θεωρήματα δυικότητας Poincare και Alexander. Ινώσεις συνινώσεις και ομοτοπικές ισοδυναμίες και ακολουθίες αυτών, επίσης το θεώρημα της κελυφωτής προσέγγισης. Το θεώρημα της αναλλοίωτης του Hopf, CW και κελυφωτή ομολογία, εκτομή και υποδιαιρέσεις, το γενικευμένο θεώρημα του Jordan και Borsuk-Ulam. Χώροι ταξινόμησης και χώροι Eilenberg-MacLane, ακολουθία Meyer-Vietoris, διανυσματικές δέσμες και χαρακτηριστικές κλάσεις.
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
Τρόπος Παράδοσης | Πρόσωπο με πρόσωπο | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών | |||||||||||||||
Οργάνωση Διδασκαλίας |
| ||||||||||||||
Αξιολόγηση Φοιτητών | Γραπτή εξέταση, Προφορική παρουσίαση, εβδομαδιαίες ασκήσεις. |
Συνιστώμενη Βιβλιογραφία
- Elements of Homotopy Theory, George Whitehead. Springer Verlag .
- Algebraic Topology, A. Hatcher, https://www.math.cornell.edu/~hatcher/AT/
- A Concise Course in Algebraic Topology, J. P. May, https://math.uchicago.edu/~may/CONCISE/ConciseRevised.pdf