Θεωρία Πιθανοτήτων (ΣEE9): Διαφορά μεταξύ των αναθεωρήσεων
Από Wiki Τμήματος Μαθηματικών
Χωρίς σύνοψη επεξεργασίας |
Χωρίς σύνοψη επεξεργασίας |
||
(2 ενδιάμεσες αναθεωρήσεις από τον ίδιο χρήστη δεν εμφανίζεται) | |||
Γραμμή 1: | Γραμμή 1: | ||
* [[ | * [[Probability Theory (ΣΕΕ9)|English version]] | ||
{{Course-Graduate-Top-GR}} | |||
{{Menu-OnAllPages-GR}} | |||
=== Γενικά === | === Γενικά === |
Τελευταία αναθεώρηση της 12:06, 15 Ιουνίου 2023
- English version
- Περιγράμματα Μεταπτυχιακών Μαθημάτων
- Τροποποίηση Περιγράμματος (η δυνατότητα αυτή απευθύνεται αποκλειστικά στα μέλη ΔΕΠ του Τμήματος)
- Τμήμα Μαθηματικών
- Αποθήκευση ως PDF ή Εκτύπωση (για αποθήκευση ως PDF, κάντε την σχετική επιλογή στη λίστα εκτυπωτών που θα εμφανιστεί)
Γενικά
Σχολή | Σχολή Θετικών Επιστημών |
---|---|
Τμήμα | Τμήμα Μαθηματικών |
Επίπεδο Σπουδών | Μεταπτυχιακό |
Κωδικός Μαθήματος | ΣEE9 |
Εξάμηνο | 2 |
Τίτλος Μαθήματος | ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ |
Αυτοτελείς Διδακτικές Δραστηριότητες | Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 7.5) |
Τύπος Μαθήματος | Ειδικότητας |
Προαπαιτούμενα Μαθήματα | |
Γλώσσα Διδασκαλίας και Εξετάσεων | Ελληνική |
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus | Ναι (στην Αγγλική γλώσσα) |
Ηλεκτρονική Σελίδα Μαθήματος (URL) | Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων. |
Μαθησιακά Αποτελέσματα
Μαθησιακά Αποτελέσματα | Σε αυτό το μάθημα παρουσιάζονται στοιχεία της θεωρίας πιθανοτήτων στοχεύοντας στην αυστηρή μαθηματική θεωρία. Μετά την ολοκλήρωσή του, οι φοιτητές:
|
---|---|
Γενικές Ικανότητες |
|
Περιεχόμενο Μαθήματος
Μέτρο-θεωρητική θεμελίωση της θεωρίας πιθανότητων (σ-άλγεβρα, χώροι μέτρου και πιθανότητας, θεώρημα επέκτασης Caratheodory, μέτρο Lebesgue, Συγκλισεις (σχεδόν βέβαια, κατά πιθανότητα, κατά κατανομή), Αλλαγή μεταβλητών, Ανεξάρτητες τυχαίες μεταβλητές). Βασικά οριακά θεωρήματα (Ασθενής νόμος μεγάλων αριθμών, λήμματα Borel-Cantelli, Θεώρημα επέκτασης Kolmogorov, Ισχυρός νόμος μεγάλων αριθμών, Lindeberg κεντρικό οριακό Θεώρημα). Martingales (Σύγκλιση Martingale, Εφαρμογές).
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
Τρόπος Παράδοσης | Πρόσωπο με πρόσωπο | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών | Χρήση Τ.Π.Ε. στην Επικοινωνία | ||||||||||
Οργάνωση Διδασκαλίας |
| ||||||||||
Αξιολόγηση Φοιτητών |
|
Συνιστώμενη Βιβλιογραφία
- Billingsley P., Probability and Measure, 4th Edition, 1995, John Wiley and Sons
- M. Capinski and E. Kopp, Measure, integral and probability, Springer. (Springer-Verlag London, Ltd., second edition, 2004).
- R. Durrett, Probability: Theory and Examples, 4th Edition, Cambridge Series in Statistical and Probabilistic Mathematics, 2010.
- Kingman, J. F. C. and Taylor, S. J. An Introduction to Measure and Probability. Cambridge, England: Cambridge University Press, 1966.
- Rao, M. M. Measure Theory And Integration. New York: Wiley, 1987.
- D. Stroock, Probability: An Analytic View, 2nd Edition, Cambridge University Press, 2011
- [Περιοδικό / Journal] Advances in Applied Probability
- [Περιοδικό / Journal] Annals of Applied Probability
- [Περιοδικό / Journal] Annals of Probability
- [Περιοδικό / Journal] Journal of Applied Probability
- [Περιοδικό / Journal] Journal of Theoretical Probability
- [Περιοδικό / Journal] Probability Surveys
- [Περιοδικό / Journal] Theory of Probability and Its Applications