Μαθηματική Θεωρία των Υπολογισμών (ΠΛ2): Διαφορά μεταξύ των αναθεωρήσεων
Από Wiki Τμήματος Μαθηματικών
Χωρίς σύνοψη επεξεργασίας |
Χωρίς σύνοψη επεξεργασίας |
||
(Μία ενδιάμεση αναθεώρηση από τον ίδιο χρήστη δεν εμφανίζεται) | |||
Γραμμή 1: | Γραμμή 1: | ||
* [[Theory of Computation (ΠΛ2)|English version]] | * [[Theory of Computation (ΠΛ2)|English version]] | ||
{{Course-Graduate-Top-GR}} | |||
{{Menu-OnAllPages-GR}} | |||
=== Γενικά === | === Γενικά === |
Τελευταία αναθεώρηση της 12:10, 15 Ιουνίου 2023
- English version
- Περιγράμματα Μεταπτυχιακών Μαθημάτων
- Τροποποίηση Περιγράμματος (η δυνατότητα αυτή απευθύνεται αποκλειστικά στα μέλη ΔΕΠ του Τμήματος)
- Τμήμα Μαθηματικών
- Αποθήκευση ως PDF ή Εκτύπωση (για αποθήκευση ως PDF, κάντε την σχετική επιλογή στη λίστα εκτυπωτών που θα εμφανιστεί)
Γενικά
Σχολή | Σχολή Θετικών Επιστημών |
---|---|
Τμήμα | Τμήμα Μαθηματικών |
Επίπεδο Σπουδών | Μεταπτυχιακό |
Κωδικός Μαθήματος | ΠΛ2 |
Εξάμηνο | 1 |
Τίτλος Μαθήματος | ΜΑΘΗΜΑΤΙΚΗ ΘΕΩΡΙΑ ΤΩΝ ΥΠΟΛΟΓΙΣΜΩΝ |
Αυτοτελείς Διδακτικές Δραστηριότητες | Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 7.5) |
Τύπος Μαθήματος | Μάθημα Ειδίκευσης |
Προαπαιτούμενα Μαθήματα | Προπτυχιακά Μαθήματα στη Θεωρία Αυτομάτων και Τυπικών Γλωσσών, Δομές Δεδομένων και Εισαγωγή στους Αλγορίθμους. |
Γλώσσα Διδασκαλίας και Εξετάσεων | Ελληνική |
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus | Ναι (στην Αγγλική γλώσσα) |
Ηλεκτρονική Σελίδα Μαθήματος (URL) | Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων. |
Μαθησιακά Αποτελέσματα
Μαθησιακά Αποτελέσματα | Σκοπός είναι η βαθύτερη κατανόηση της Θεωρίας Υπολογισμού που είναι η Θεωρία Αυτομάτων και Τυπικών Γλωσσών, η Υπολογισιμότητα και η Πολυπλοκότητα τους καθώς και η εισαγωγή των φοιτητών στην κριτική σκέψη και την ερευνητική διαδικασία. Στο μάθημα γίνεται λεπτομερής εξέταση των Πεπερασμένων Αυτομάτων (Αιτιοκρατικών, μη Αιτιοπρατικών, με ε-μεταβάσεις) και των εφαρμογών τους, των Κανονικών Εκφράσεων και Γλωσσών, των Ιδιοτήτων των Κανονικών Γλωσσών. Των Ανεξάρτητων Συμφραζομένων Γραμματικών και Γλωσσών, των Πεπερασμένων Αυτομάτων με Στοιβάδα (Αιτιοκρατικών, Παραλλαγές όπως αποδοχή με τελική κατάσταση ή με κενή στοιβάδα), των ιδιοτήτων των Ανεξάρτητων Συμφραζομένων Γλωσσών. Των Μηχανών Turing (standad ΜΤ, με πολλαπλές λωρίδες ΜΤ, με απεριόριστη ταινία με αμφότερες κατευθύνσεις, με πολλαπλές ταινίες ΜΤ, μη Αιτιοκρατικές ΜΤ, Καθολική ΜΤ). Των εννοιών της Επιλυσιμότητας και Υπολογισιμότητας καθώς και της Πολυπολοκότητας των Υπολογισμών. Μετά την ολοκλήρωση του μαθήματος ο φοιτητής /τρια μπορεί να χειριστεί:
Πεπερασμένα Αυτόματα, τα Πεπερασμένα Αυτόματα με Στοιβάδα και τις Μηχανές Turing, την Επιλυσιμότητα και Υπολογισιμότητα καθώς και την Πολυπλοκότητα των Υπολογισμών. |
---|---|
Γενικές Ικανότητες |
|
Περιεχόμενο Μαθήματος
- Ιδιότητες των μαθηματικών μοντέλων των υπολογισμών
- Κατάταξη προβλημάτων σε επιλύσιμα και μη
- Κατάταξη επιλύσιμων προβλημάτων σε εύκολα
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
Τρόπος Παράδοσης | Πρόσωπο με πρόσωπο | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών | Ναι | ||||||||||
Οργάνωση Διδασκαλίας |
| ||||||||||
Αξιολόγηση Φοιτητών |
|
Συνιστώμενη Βιβλιογραφία
- Sudkamp, Thomas A. Languages and machines : an introduction to the theory of computer science / Thomas A. Sudkamp. - 2nd ed. ISBN 0-201-82136-2
- Hopcroft, John E., Rajeev Motwani, Jeffrey . Ullman Introduction to automata theory, languages and computation -2nd ed. ISBN 0321210298
- Michael Sipser. Introduction to the Theory of Computation (3rd ed.). Cengage Learning. ISBN 978-1-133-18779-0.