Θεωρία Προσεγγίσεως (ΑΑ2): Διαφορά μεταξύ των αναθεωρήσεων

Από Wiki Τμήματος Μαθηματικών
Χωρίς σύνοψη επεξεργασίας
Χωρίς σύνοψη επεξεργασίας
 
Γραμμή 1: Γραμμή 1:
* [[Approximation Theory (AA2)|English version]]
* [[Approximation Theory (AA2)|English version]]
{{Course-Graduate-Top-GR}}
{{Course-Graduate-Top-GR}}
{{Menu-OnAllPages-GR}}


=== Γενικά ===
=== Γενικά ===

Τελευταία αναθεώρηση της 12:09, 15 Ιουνίου 2023

Γενικά

Σχολή Σχολή Θετικών Επιστημών
Τμήμα Τμήμα Μαθηματικών
Επίπεδο Σπουδών Μεταπτυχιακό
Κωδικός Μαθήματος ΑΑ2
Εξάμηνο 1
Τίτλος Μαθήματος ΘΕΩΡΙΑ ΠΡΟΣΕΓΓΙΣΕΩΣ
Αυτοτελείς Διδακτικές Δραστηριότητες Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 7.5)
Τύπος Μαθήματος Ειδικού υποβάθρου
Προαπαιτούμενα Μαθήματα
Γλώσσα Διδασκαλίας και Εξετάσεων Ελληνική
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus Ναι (στην Αγγλική γλώσσα)
Ηλεκτρονική Σελίδα Μαθήματος (URL) Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων.

Μαθησιακά Αποτελέσματα

Μαθησιακά Αποτελέσματα Έπειτα από επιτυχή συμμετοχή στο μάθημα οι φοιτητές αναμένεται να:
  • Κατανοούν τα βασικά ζητήματα προσέγγισης από ένα χώρο σε υποχώρο του,
  • Διακρίνουν τις διαφορές (προτερήματα και μειονεκτήματα) ανάμεσα στα διαφορετικά είδη προσεγγίσεων,
  • Γνωρίζουν τις βασικές αριθμητικές μεθόδους για τα είδη των πολυωνυμικών προσεγγίσεων,
  • Γνωρίζουν να υλοποιούν τους αλγορίθμους των μεθόδων.
Γενικές Ικανότητες
  • Αναζήτηση, ανάλυση και σύνθεση δεδομένων και πληροφοριών, με τη χρήση και των απαραίτητων τεχνολογιών
  • Προσαρμογή σε νέες καταστάσεις
  • Άσκηση κριτικής και αυτοκριτικής
  • Προαγωγή της ελεύθερης, δημιουργικής και επαγωγικής σκέψης.

Περιεχόμενο Μαθήματος

  • Γενική θεωρία ύπαρξης και μοναδικότητας της προσέγγισης.
  • Ομοιόμορφη πολυωνυμική προσέγγιση: Θεωρήματα Weierstrass, Bernstein, Jackson, προσέγγιση συνεχών συναρτήσεων, προσέγγιση διακριτών συναρτήσεων, αλγόριθμος Remez.
  • Πολυωνυμική προσέγγιση ελαχίστων τετραγώνων: Σύστημα κανονικών εξισώσεων, Ορθογώνια πολυώνυμα, προσέγγιση συνεχών συναρτήσεων, προσέγγιση διακριτών συναρτήσεων, συσχέτιση με ομοιόμορφη προσέγγιση.
  • Πολυωνυμική προσέγγιση πρώτης δύναμης: Χαρακτηρισμός, προσέγγιση συνεχών συναρτήσεων, προσέγγιση διακριτών συναρτήσεων.
  • Ρητή προσέγγιση: Χαρακτηρισμός, συσχέτιση με ομοιόμορφη προσέγγιση, Αλγόριθμος Remaz.
  • Ρητή Παρεμβολή.

Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση

Τρόπος Παράδοσης Στην τάξη
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών
Οργάνωση Διδασκαλίας
Δραστηριότητα Φόρτος Εργασίας Εξαμήνου
Διαλέξεις 39
Αυτοτελής Μελέτη 78
Επίλυση Ασκήσεων - Εργασίες 70.5
Σύνολο Μαθήματος 187.5
Αξιολόγηση Φοιτητών Γλώσσα Αξιολόγησης: Ελληνική. Μέθοδος Αξιολόγησης: Γραπτή εξέταση.

Συνιστώμενη Βιβλιογραφία

  • Theodor J. Rivlin: An Introduction to the Approximation of Functions. Dover Publications Inc. New York, 1969.