Partial Differential Equations (MAE713): Διαφορά μεταξύ των αναθεωρήσεων
Χωρίς σύνοψη επεξεργασίας |
|||
(10 ενδιάμεσες αναθεωρήσεις από τον ίδιο χρήστη δεν εμφανίζεται) | |||
Γραμμή 1: | Γραμμή 1: | ||
[[ | * [[Μερικές Διαφορικές Εξισώσεις (ΜΑΕ713)|Ελληνική Έκδοση]] | ||
{{Course-UnderGraduate-Top-EN}} | |||
{{Menu-OnAllPages-EN}} | |||
=== General === | === General === | ||
Γραμμή 30: | Γραμμή 32: | ||
! Independent Teaching Activities | ! Independent Teaching Activities | ||
| | | | ||
Lectures | Lectures (Weekly Teaching Hours: 3, Credits: 6) | ||
|- | |- | ||
! Course Type | ! Course Type | ||
Γραμμή 48: | Γραμμή 50: | ||
|- | |- | ||
! Course Website (URL) | ! Course Website (URL) | ||
| | | See [https://ecourse.uoi.gr/ eCourse], the Learning Management System maintained by the University of Ioannina. | ||
|} | |} | ||
Γραμμή 56: | Γραμμή 58: | ||
! Learning outcomes | ! Learning outcomes | ||
| | | | ||
The aim of the course is an introduction to Partial | The aim of the course is an introduction to Partial Differential Equations. By this course the students become familiar with a broad area of Analysis that has many applications to other sciences. The course highlights the wealth of problems that arise and proposes methods to overcome them. These are presented exemplarily and aim to teach ways of transcending and generalizing known methods and solutions. The students learn to analyze methodically externally given problems, taking into account relevant informations and aims, and to try to apply knowledge from other areas of Pure Mathematics in order to solve these problems. Moreover, the students learn to interpret the obtained mathematical results. On the level of content, the students learn about, mainly linear, Partial Differential Equations of first and second order for functions of two variables with respect to both, their explicit solution and their qualitative behavior, and obtain an elementary overview of further problems. | ||
The | |||
|- | |- | ||
! General Competences | ! General Competences | ||
Γραμμή 69: | Γραμμή 67: | ||
* Production of free, creative and inductive thinking | * Production of free, creative and inductive thinking | ||
|} | |} | ||
=== Syllabus === | === Syllabus === | ||
Overview of PDE and Systems: | |||
* Overview of Partial Differential Equations (PDE) and Systems: classification with respect to their (non-)linearity, description of the arising problems and of the various kinds of solutions (classical and weak, general and with boundary values). | |||
( | |||
(In the following the focus is given on two independent variables.) | |||
First order PDE (linear, semi-linear, quasi-linear): | |||
* First order PDE (linear, semi-linear, quasi-linear): geometric and algebraic observations concerning their qualitative behavior, initial value problems and method of characteristics, discussion of the Burgers equation, shock waves and weak solutions, Rankine-Hugoniot condition. | |||
Second order PDE: | * Second order PDE: classification, characteristic directions and characteristic curves, wave equation on the line (homogeneous and inhomogeneous), separation of variables for the Laplace and heat equations, Poisson formula. | ||
( | (Alternatively: instead of the discussion of the (non-linear) Burgers equation and of weak solutions an introduction to the Fourier transform may be given and the heat equation on the line may be discussed.) | ||
=== Teaching and Learning Methods - Evaluation === | === Teaching and Learning Methods - Evaluation === | ||
{| class="wikitable" | {| class="wikitable" | ||
Γραμμή 111: | Γραμμή 111: | ||
! Student Performance Evaluation | ! Student Performance Evaluation | ||
| | | | ||
* | * Written exam (mandatory) | ||
* | * Homework (optional) | ||
|} | |} | ||
=== Attached Bibliography === | === Attached Bibliography === | ||
See [https://service.eudoxus.gr/public/departments#20 Eudoxus]. | <!-- In order to edit the bibliography, visit the webpage --> | ||
<!-- https://wiki.math.uoi.gr/index.php/%CE%A0%CF%81%CF%8C%CF%84%CF%85%CF%80%CE%BF:MAE713-Biblio --> | |||
See the official [https://service.eudoxus.gr/public/departments#20 Eudoxus site] or the [https://cloud.math.uoi.gr/index.php/s/62t8WPCwEXJK7oL local repository] of Eudoxus lists per academic year, which is maintained by the Department of Mathematics. Books and other resources, not provided by Eudoxus: | |||
{{MAE713-Biblio}} |
Τελευταία αναθεώρηση της 12:31, 15 Ιουνίου 2023
- Ελληνική Έκδοση
- Undergraduate Courses Outlines
- Outline Modification (available only for faculty members)
- Department of Mathematics
- Save as PDF or Print (to save as PDF, pick the corresponding option from the list of printers, located in the window which will popup)
General
School |
School of Science |
---|---|
Academic Unit |
Department of Mathematics |
Level of Studies |
Undergraduate |
Course Code |
MAE713 |
Semester |
7 |
Course Title |
Partial Differential Equations |
Independent Teaching Activities |
Lectures (Weekly Teaching Hours: 3, Credits: 6) |
Course Type |
Special Background |
Prerequisite Courses | - |
Language of Instruction and Examinations |
Greek, English |
Is the Course Offered to Erasmus Students |
Yes (in English) |
Course Website (URL) | See eCourse, the Learning Management System maintained by the University of Ioannina. |
Learning Outcomes
Learning outcomes |
The aim of the course is an introduction to Partial Differential Equations. By this course the students become familiar with a broad area of Analysis that has many applications to other sciences. The course highlights the wealth of problems that arise and proposes methods to overcome them. These are presented exemplarily and aim to teach ways of transcending and generalizing known methods and solutions. The students learn to analyze methodically externally given problems, taking into account relevant informations and aims, and to try to apply knowledge from other areas of Pure Mathematics in order to solve these problems. Moreover, the students learn to interpret the obtained mathematical results. On the level of content, the students learn about, mainly linear, Partial Differential Equations of first and second order for functions of two variables with respect to both, their explicit solution and their qualitative behavior, and obtain an elementary overview of further problems. |
---|---|
General Competences |
|
Syllabus
- Overview of Partial Differential Equations (PDE) and Systems: classification with respect to their (non-)linearity, description of the arising problems and of the various kinds of solutions (classical and weak, general and with boundary values).
(In the following the focus is given on two independent variables.)
- First order PDE (linear, semi-linear, quasi-linear): geometric and algebraic observations concerning their qualitative behavior, initial value problems and method of characteristics, discussion of the Burgers equation, shock waves and weak solutions, Rankine-Hugoniot condition.
- Second order PDE: classification, characteristic directions and characteristic curves, wave equation on the line (homogeneous and inhomogeneous), separation of variables for the Laplace and heat equations, Poisson formula.
(Alternatively: instead of the discussion of the (non-linear) Burgers equation and of weak solutions an introduction to the Fourier transform may be given and the heat equation on the line may be discussed.)
Teaching and Learning Methods - Evaluation
Delivery |
Classroom (face-to-face) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Use of Information and Communications Technology |
The students may contact the lecturer by e-mail | ||||||||||
Teaching Methods |
| ||||||||||
Student Performance Evaluation |
|
Attached Bibliography
See the official Eudoxus site or the local repository of Eudoxus lists per academic year, which is maintained by the Department of Mathematics. Books and other resources, not provided by Eudoxus:
- Δάσιος, Γ., Κυριάκη, Κ., & Βαφέας, Π. (2023). Μερικές Διαφορικές Εξισώσεις [Προπτυχιακό εγχειρίδιο]. Κάλλιπος, Ανοικτές Ακαδημαϊκές Εκδόσεις. http://dx.doi.org/10.57713/kallipos-317
- L. C. Evans. Partial Differential Equations. Second edition. AMS, 2010.
- G. B. Folland. Introduction to Partial Differential Equations. Princeton University Press, 1995.