Αριθμητική Ανάλυση (ΑΑ1): Διαφορά μεταξύ των αναθεωρήσεων

Από Wiki Τμήματος Μαθηματικών
(Νέα σελίδα με 'Περιγράμματα Μεταπτυχιακών Μαθημάτων - [https://math.uoi.gr Τμήμα Μαθηματικών] === Γενικά === {| class="wikitable" |- ! Σχολή | Σχολή Θετικών Επιστημών |- ! Τμήμα | Τμήμα Μαθηματικών |- ! Επίπεδο Σπουδών | Μεταπτυχιακό |- ! Κωδικός Μαθήματος | ΑΑ1Α |- ! Εξάμηνο | 2 |- ! Τίτλος Μαθήματος | Α...')
 
Χωρίς σύνοψη επεξεργασίας
 
(11 ενδιάμεσες αναθεωρήσεις από τον ίδιο χρήστη δεν εμφανίζεται)
Γραμμή 1: Γραμμή 1:
[[Περιγράμματα Μεταπτυχιακών Μαθημάτων]] - [https://math.uoi.gr Τμήμα Μαθηματικών]
* [[Numerical Analysis (ΑΑ1)|English version]]
{{Course-Graduate-Top-GR}}
{{Menu-OnAllPages-GR}}


=== Γενικά ===
=== Γενικά ===
Γραμμή 15: Γραμμή 17:
|-
|-
! Κωδικός Μαθήματος
! Κωδικός Μαθήματος
| ΑΑ1Α
| ΑΑ1
|-
|-
! Εξάμηνο
! Εξάμηνο
| 2
| 1
|-
|-
! Τίτλος Μαθήματος
! Τίτλος Μαθήματος
Γραμμή 27: Γραμμή 29:
|-
|-
! Τύπος Μαθήματος
! Τύπος Μαθήματος
| Ειδικού υποβάθρου
| Ειδικού υποβάθρου, ανάπτυξη δεξιοτήτων.
|-
|-
! Προαπαιτούμενα Μαθήματα
! Προαπαιτούμενα Μαθήματα
Γραμμή 39: Γραμμή 41:
|-
|-
! Ηλεκτρονική Σελίδα Μαθήματος (URL)
! Ηλεκτρονική Σελίδα Μαθήματος (URL)
| Δείτε το [https://ecourse.uoi.gr/ eCourse], το Σύστημα Διαχείρισης Μάθησης του Πανεπιστημίου Ιωαννίνων.
| Δείτε το [https://ecourse.uoi.gr/ eCourse], την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων.
|}
|}


Γραμμή 47: Γραμμή 49:
|-
|-
! Μαθησιακά Αποτελέσματα
! Μαθησιακά Αποτελέσματα
| Μετά την επιτυχή ολοκλήρωση του μαθήματος, οι φοιτητές θα είναι σε θέση:
|
* να γνωρίζουν σε βάθος τη θεωρία Σύγκλισης της μεθόδου του Νεύτωνα για μη γραμμικά Συστήματα,
Μετά την επιτυχή ολοκλήρωση του μαθήματος, οι φοιτητές θα μπορούν να:
* να εφαρμόζουν τη μέθοδο του Νεύτωνα για μη γραμμικά Συστήματα,
# εφαρμόζουν προηγμένες θεωρητικές τεχνικές στον πολυδιάστατο χώρο για την απόδειξη και ανάλυση κριτηρίων σύγκλισης και ευστάθειας αριθμητικών μεθόδων για την εύρεση της λύσης  διαφόρων προβλημάτων.
* να γνωρίζουν τις τεχνικές προσέγγισης συναρτήσεων με παρεμβολή,  
# αξιολογούν και να συγκρίνουν αριθμητικές μεθόδους ως προς την ακρίβειά τους, την αποδοτικότητά τους,  και τη δυνατότητα εφαρμογής τους.
* να διακρίνουν τις παθολογικές καταστάσεις κατά την παρεμβολή και να επιλέγουν τις κατάλληλες μεθόδους,
# επιδεικνύουν ανεξαρτησία στη χρήση ερευνητικού υλικού για την απόδειξη βασικών αποτελεσμάτων
* να κατανοήσουν την ανάλυση σφαλμάτων,
# υλοποιούν   αριθμητικές μεθόδους και κατασκευάζουν κατάλληλα αριθμητικά πειράματα  με στόχο  την επαλήθευση των αντίστοιχων θεωρητικών αποτελεσμάτων.
* να υλοποιούν τις παραπάνω μεθόδους με προγράμματα στον υπολογιστή.
# αξιολογούν την ορθότητα των αριθμητικών αποτελεσμάτων χρησιμοποιώντας τόσο τη θεωρία των αριθμητικών μεθόδων όσο και τα αποτελέσματα των αντίστοιχων συνεχών προβλημάτων.
|-
|-
! Γενικές Ικανότητες
! Γενικές Ικανότητες
|
|
* Αναζήτηση, ανάλυση και σύνθεση δεδομένων και πληροφοριών, με τη χρήση και των απαραίτητων τεχνολογιών  
* Αναζήτηση, ανάλυση και σύνθεση δεδομένων και πληροφοριών, με τη χρήση και των απαραίτητων τεχνολογιών.
* Προσαρμογή σε νέες καταστάσεις  
* Προσαρμογή σε νέες καταστάσεις.
* Άσκηση κριτικής και αυτοκριτικής
* Αυτόνομη εργασία.
* Λήψη αποφάσεων.
* Προαγωγή της αναλυτικής και συνθετικής σκέψης.
* Προαγωγή της ελεύθερης, δημιουργικής και επαγωγικής σκέψης.
* Προαγωγή της ελεύθερης, δημιουργικής και επαγωγικής σκέψης.
* Εργασία σε διεπιστημονικό περιβάλλον.
|}
|}


=== Περιεχόμενο Μαθήματος ===
=== Περιεχόμενο Μαθήματος ===


Παραγώγιση στον Rn: Παράγωγος κατά Frechet, Παράγωγος κατά Gateaux. Η Μέθοδος του Νεύτωνα για τη λύση μη Γραμμικών Συστημάτων: Θεωρήματα Σταθερού Σημείου, Θεωρήματα Συστολής, Ταχύτητα Σύγκλισης της Μεθόδου του Νεύτωνα. Πολυωνυμική Παρεμβολή: Παρεμβολή Lagrange-Νεύτωνα, Παρεμβολή Hermite, Παρεμβολή με Τμηματικά Γραμμικές Συναρτήσεις, Παρεμβολή με Τμηματικά Συναρτήσεις Hermite, Παρεμβολή με Κυβικές Splines. Σφάλματα κατά την Παρεμβολή, Σύγκριση των Μεθόδων Παρεμβολής.
* Παραγώγιση στον R^n , παράγωγος κατά Fréchet, παράγωγος κατά Gateaux. Η μέθοδος του Νεύτωνα για τη λύση μη γραμμικών συστημάτων. Θεωρήματα σταθερού σημείου, θεωρήματα συστολής, ταχύτητα σύγκλισης της μεθόδου του Νεύτωνα.  
* Αριθμητική επίλυση συστημάτων συνήθων διαφορικών εξισώσεων. Μονοβηματικές και πολυβηματικές μέθοδοι. Συνέπεια, ευστάθεια, και σύγκλιση. Άκαμπτα προβλήματα.
* Πολυωνυμική Παρεμβολή: Παρεμβολή Lagrange, Παρεμβολή Hermite, Παρεμβολή με γραμμικές και κυβικές splines. Εκτίμηση σφάλματος παρεμβολής.


=== Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση ===
=== Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση ===
Γραμμή 72: Γραμμή 79:
|-
|-
! Τρόπος Παράδοσης
! Τρόπος Παράδοσης
| Στην τάξη
| Πρόσωπο με πρόσωπο.
|-
|-
! Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών
! Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών
|
|
* Xρήση ταμπλέτας για την παράδοση διδασκαλίας.  Οι σημειώσεις από την τάξη γίνονται διαθέσιμες σε μορφή pdf στο ecourse.
* Παροχή υλικού μελέτης μέσω του ecourse.
* Επικοινωνία με τους φοιτητές χρησιμοποιώντας  e-mail, και τις πλατφόρμες ecourse και MTeams.
* Χρήση λογισμικών πακέτων (Python ή Octave) για την υλοποίηση αριθμητικών μεθόδων.
|-
|-
! Οργάνωση Διδασκαλίας
! Οργάνωση Διδασκαλίας
Γραμμή 87: Γραμμή 98:
|-
|-
| Αυτοτελής Μελέτη
| Αυτοτελής Μελέτη
| 78
| 70
|-
| Λύση Ασκήσεων
| 30
|-
| Εκπόνηση Εργασίας
| 30
|-
|-
| Επίλυση Ασκήσεων -Εργασίες
| Δημόσια Παρουσίαση
| 70.5
| 18.5
|-
|-
| Σύνολο Μαθήματος  
| Σύνολο Μαθήματος  
Γραμμή 97: Γραμμή 114:
|-
|-
! Αξιολόγηση Φοιτητών
! Αξιολόγηση Φοιτητών
| Γραπτή εξέταση - Δημόσια Παρουσίαση.
|
* Εβδομαδιαίες ασκήσεις (βάρος 35%)
* Εκπόνηση μελέτης στο LaTeX (βάρος 40%)
* Δημόσια παρουσίαση με Beamer (βάρος 25%)
|}
|}



Τελευταία αναθεώρηση της 12:09, 15 Ιουνίου 2023

Γενικά

Σχολή Σχολή Θετικών Επιστημών
Τμήμα Τμήμα Μαθηματικών
Επίπεδο Σπουδών Μεταπτυχιακό
Κωδικός Μαθήματος ΑΑ1
Εξάμηνο 1
Τίτλος Μαθήματος ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ
Αυτοτελείς Διδακτικές Δραστηριότητες Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 7.5)
Τύπος Μαθήματος Ειδικού υποβάθρου, ανάπτυξη δεξιοτήτων.
Προαπαιτούμενα Μαθήματα
Γλώσσα Διδασκαλίας και Εξετάσεων Ελληνική
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus Ναι (στην Αγγλική γλώσσα)
Ηλεκτρονική Σελίδα Μαθήματος (URL) Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων.

Μαθησιακά Αποτελέσματα

Μαθησιακά Αποτελέσματα

Μετά την επιτυχή ολοκλήρωση του μαθήματος, οι φοιτητές θα μπορούν να:

  1. εφαρμόζουν προηγμένες θεωρητικές τεχνικές στον πολυδιάστατο χώρο για την απόδειξη και ανάλυση κριτηρίων σύγκλισης και ευστάθειας αριθμητικών μεθόδων για την εύρεση της λύσης διαφόρων προβλημάτων.
  2. αξιολογούν και να συγκρίνουν αριθμητικές μεθόδους ως προς την ακρίβειά τους, την αποδοτικότητά τους, και τη δυνατότητα εφαρμογής τους.
  3. επιδεικνύουν ανεξαρτησία στη χρήση ερευνητικού υλικού για την απόδειξη βασικών αποτελεσμάτων
  4. υλοποιούν αριθμητικές μεθόδους και κατασκευάζουν κατάλληλα αριθμητικά πειράματα με στόχο την επαλήθευση των αντίστοιχων θεωρητικών αποτελεσμάτων.
  5. αξιολογούν την ορθότητα των αριθμητικών αποτελεσμάτων χρησιμοποιώντας τόσο τη θεωρία των αριθμητικών μεθόδων όσο και τα αποτελέσματα των αντίστοιχων συνεχών προβλημάτων.
Γενικές Ικανότητες
  • Αναζήτηση, ανάλυση και σύνθεση δεδομένων και πληροφοριών, με τη χρήση και των απαραίτητων τεχνολογιών.
  • Προσαρμογή σε νέες καταστάσεις.
  • Αυτόνομη εργασία.
  • Λήψη αποφάσεων.
  • Προαγωγή της αναλυτικής και συνθετικής σκέψης.
  • Προαγωγή της ελεύθερης, δημιουργικής και επαγωγικής σκέψης.
  • Εργασία σε διεπιστημονικό περιβάλλον.

Περιεχόμενο Μαθήματος

  • Παραγώγιση στον R^n , παράγωγος κατά Fréchet, παράγωγος κατά Gateaux. Η μέθοδος του Νεύτωνα για τη λύση μη γραμμικών συστημάτων. Θεωρήματα σταθερού σημείου, θεωρήματα συστολής, ταχύτητα σύγκλισης της μεθόδου του Νεύτωνα.
  • Αριθμητική επίλυση συστημάτων συνήθων διαφορικών εξισώσεων. Μονοβηματικές και πολυβηματικές μέθοδοι. Συνέπεια, ευστάθεια, και σύγκλιση. Άκαμπτα προβλήματα.
  • Πολυωνυμική Παρεμβολή: Παρεμβολή Lagrange, Παρεμβολή Hermite, Παρεμβολή με γραμμικές και κυβικές splines. Εκτίμηση σφάλματος παρεμβολής.

Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση

Τρόπος Παράδοσης Πρόσωπο με πρόσωπο.
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών
  • Xρήση ταμπλέτας για την παράδοση διδασκαλίας. Οι σημειώσεις από την τάξη γίνονται διαθέσιμες σε μορφή pdf στο ecourse.
  • Παροχή υλικού μελέτης μέσω του ecourse.
  • Επικοινωνία με τους φοιτητές χρησιμοποιώντας e-mail, και τις πλατφόρμες ecourse και MTeams.
  • Χρήση λογισμικών πακέτων (Python ή Octave) για την υλοποίηση αριθμητικών μεθόδων.
Οργάνωση Διδασκαλίας
Δραστηριότητα Φόρτος Εργασίας Εξαμήνου
Διαλέξεις 39
Αυτοτελής Μελέτη 70
Λύση Ασκήσεων 30
Εκπόνηση Εργασίας 30
Δημόσια Παρουσίαση 18.5
Σύνολο Μαθήματος 187.5
Αξιολόγηση Φοιτητών
  • Εβδομαδιαίες ασκήσεις (βάρος 35%)
  • Εκπόνηση μελέτης στο LaTeX (βάρος 40%)
  • Δημόσια παρουσίαση με Beamer (βάρος 25%)

Συνιστώμενη Βιβλιογραφία

  • Αριθμητική Ανάλυση, Β. Δουγαλής, Πανεπιστημίου Αθηνών.