Αριθμητική Γραμμική Άλγεβρα II (ΑΑ4): Διαφορά μεταξύ των αναθεωρήσεων

Από Wiki Τμήματος Μαθηματικών
(Νέα σελίδα με 'Περιγράμματα Μεταπτυχιακών Μαθημάτων - [https://math.uoi.gr Τμήμα Μαθηματικών] === Γενικά === {| class="wikitable" |- ! Σχολή | Σχολή Θετικών Επιστημών |- ! Τμήμα | Τμήμα Μαθηματικών |- ! Επίπεδο Σπουδών | Μεταπτυχιακό |- ! Κωδικός Μαθήματος | ΑΑ4Α |- ! Εξάμηνο | 2 |- ! Τίτλος Μαθήματος | Α...')
 
Χωρίς σύνοψη επεξεργασίας
 
(7 ενδιάμεσες αναθεωρήσεις από τον ίδιο χρήστη δεν εμφανίζεται)
Γραμμή 1: Γραμμή 1:
[[Περιγράμματα Μεταπτυχιακών Μαθημάτων]] - [https://math.uoi.gr Τμήμα Μαθηματικών]
* [[Numerical Linear Algebra II (AA4)|English version]]
{{Course-Graduate-Top-GR}}
{{Menu-OnAllPages-GR}}


=== Γενικά ===
=== Γενικά ===
Γραμμή 15: Γραμμή 17:
|-
|-
! Κωδικός Μαθήματος
! Κωδικός Μαθήματος
| ΑΑ4Α
| ΑΑ4
|-
|-
! Εξάμηνο
! Εξάμηνο
Γραμμή 39: Γραμμή 41:
|-
|-
! Ηλεκτρονική Σελίδα Μαθήματος (URL)
! Ηλεκτρονική Σελίδα Μαθήματος (URL)
| Δείτε το [https://ecourse.uoi.gr/ eCourse], το Σύστημα Διαχείρισης Μάθησης του Πανεπιστημίου Ιωαννίνων.
| Δείτε το [https://ecourse.uoi.gr/ eCourse], την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων.
|}
|}



Τελευταία αναθεώρηση της 12:09, 15 Ιουνίου 2023

Γενικά

Σχολή Σχολή Θετικών Επιστημών
Τμήμα Τμήμα Μαθηματικών
Επίπεδο Σπουδών Μεταπτυχιακό
Κωδικός Μαθήματος ΑΑ4
Εξάμηνο 2
Τίτλος Μαθήματος ΑΡΙΘΜΗΤΙΚΗ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙI
Αυτοτελείς Διδακτικές Δραστηριότητες Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 7.5)
Τύπος Μαθήματος Ειδικού υποβάθρου
Προαπαιτούμενα Μαθήματα
Γλώσσα Διδασκαλίας και Εξετάσεων Ελληνική
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus Ναι (στην Αγγλική γλώσσα)
Ηλεκτρονική Σελίδα Μαθήματος (URL) Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων.

Μαθησιακά Αποτελέσματα

Μαθησιακά Αποτελέσματα Μετά την επιτυχή ολοκλήρωση του μαθήματος, οι φοιτητές θα είναι σε θέση:
  • να κατανοήσουν τη θεωρία για τις μεθόδους εύρεσης ιδιοτιμών και της ανάλυσης ιδιαζουσών τιμών,
  • να γνωρίζουν τη χρησιμότητα της θεωρίας αυτής μέσα από τις εφαρμογές,
  • να κατανοήσουν τη θεωρία των μεθόδων Υποχώρων Krylov,
  • να κατανοήσουν την ανάλυση σφαλμάτων,
  • να κατανοήσουν τις τεχνικές προρρύθμισης και την αναγκαιότητα για προρρύθμιση,
  • να εφαρμόσουν τις παραπάνω μεθόδους σε μεγάλης κλίμακας προβλήματα με προγράμματα στον υπολογιστή.
Γενικές Ικανότητες
  • Αναζήτηση, ανάλυση και σύνθεση δεδομένων και πληροφοριών, με τη χρήση και των απαραίτητων τεχνολογιών
  • Προσαρμογή σε νέες καταστάσεις
  • Άσκηση κριτικής και αυτοκριτικής
  • Προαγωγή της ελεύθερης, δημιουργικής και επαγωγικής σκέψης.

Περιεχόμενο Μαθήματος

Αριθμητικές μέθοδοι για την εύρεση Ιδιοτιμών και Ιδιοδιανυσμάτων: Μέθοδος Δυνάμεων, QR μέθοδος, Ευσταθείς αλγόριθμοι (Ανακλάσεις Housholder, Στροφές Givens). Ιδιάζουσες Τιμές: Ανάλυση Ιδιαζουσών Τιμών, Ευσταθείς Αλγόριθμοι, Εφαρμογές Ιδιαζουσών Τιμών. Μέθοδοι Υποχώρων Krylov για την επίλυση μεγάλης κλίμακας γραμμικών Συστημάτων: Προρρυθμισμένη μέθοδος Συζυγών Κλίσεων. Γενικευμένη Μέθοδος Ελαχίστου Υπολοίπου (GMRES): Θεωρία Ορθογωνοποίησης Υποχώρων Krylov, Αλγόριθμοι Arnoldi και Lanczos. Εφαρμογές Επαναληπτικών μεθόδων σε προβλήματα συνοριακών τιμών και στην επεξεργασία σήματος και εικόνας.

Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση

Τρόπος Παράδοσης Στην τάξη
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών
Οργάνωση Διδασκαλίας
Δραστηριότητα Φόρτος Εργασίας Εξαμήνου
Διαλέξεις 39
Αυτοτελής Μελέτη 78
Επίλυση Ασκήσεων - Εργασίες 70.5
Σύνολο Μαθήματος 187.5
Αξιολόγηση Φοιτητών Γραπτή εξέταση - Προφορική εξέταση

Συνιστώμενη Βιβλιογραφία

  • “Αριθμητική Γραμμική Άλγεβρα”, Β. Δουγαλής, Δ. Νούτσος, Α. Χατζηδήμος, Τυπογραφείο Πανεπιστημίου Ιωαννίνων.
  • “Matrix Computations”, G. H. Golub, C. F. Van Loan, The John Hopkings University Press, Baltimore and London, 1996.