Αριθμητική Ανάλυση (ΑΑ1): Διαφορά μεταξύ των αναθεωρήσεων
Από Wiki Τμήματος Μαθηματικών
(→Γενικά) |
|||
Γραμμή 47: | Γραμμή 47: | ||
|- | |- | ||
! Μαθησιακά Αποτελέσματα | ! Μαθησιακά Αποτελέσματα | ||
| Μετά την επιτυχή ολοκλήρωση του μαθήματος, οι φοιτητές θα | | | ||
Μετά την επιτυχή ολοκλήρωση του μαθήματος, οι φοιτητές θα μπορούν να: | |||
# εφαρμόζουν προηγμένες θεωρητικές τεχνικές στον πολυδιάστατο χώρο για την απόδειξη και ανάλυση κριτηρίων σύγκλισης και ευστάθειας αριθμητικών μεθόδων για την εύρεση της λύσης διαφόρων προβλημάτων. | |||
# αξιολογούν και να συγκρίνουν αριθμητικές μεθόδους ως προς την ακρίβειά τους, την αποδοτικότητά τους, και τη δυνατότητα εφαρμογής τους. | |||
# επιδεικνύουν ανεξαρτησία στη χρήση ερευνητικού υλικού για την απόδειξη βασικών αποτελεσμάτων | |||
# υλοποιούν αριθμητικές μεθόδους και κατασκευάζουν κατάλληλα αριθμητικά πειράματα με στόχο την επαλήθευση των αντίστοιχων θεωρητικών αποτελεσμάτων. | |||
# αξιολογούν την ορθότητα των αριθμητικών αποτελεσμάτων χρησιμοποιώντας τόσο τη θεωρία των αριθμητικών μεθόδων όσο και τα αποτελέσματα των αντίστοιχων συνεχών προβλημάτων. | |||
|- | |- | ||
! Γενικές Ικανότητες | ! Γενικές Ικανότητες | ||
| | | | ||
* Αναζήτηση, ανάλυση και σύνθεση δεδομένων και πληροφοριών, με τη χρήση και των απαραίτητων τεχνολογιών | * Αναζήτηση, ανάλυση και σύνθεση δεδομένων και πληροφοριών, με τη χρήση και των απαραίτητων τεχνολογιών. | ||
* Προσαρμογή σε νέες καταστάσεις | * Προσαρμογή σε νέες καταστάσεις. | ||
* | * Αυτόνομη εργασία. | ||
* Λήψη αποφάσεων. | |||
* Προαγωγή της αναλυτικής και συνθετικής σκέψης. | |||
* Προαγωγή της ελεύθερης, δημιουργικής και επαγωγικής σκέψης. | * Προαγωγή της ελεύθερης, δημιουργικής και επαγωγικής σκέψης. | ||
* Εργασία σε διεπιστημονικό περιβάλλον. | |||
|} | |} | ||
Αναθεώρηση της 21:58, 3 Οκτωβρίου 2022
Περιγράμματα Μεταπτυχιακών Μαθημάτων - Τμήμα Μαθηματικών
Γενικά
Σχολή | Σχολή Θετικών Επιστημών |
---|---|
Τμήμα | Τμήμα Μαθηματικών |
Επίπεδο Σπουδών | Μεταπτυχιακό |
Κωδικός Μαθήματος | ΑΑ1 |
Εξάμηνο | 1 |
Τίτλος Μαθήματος | ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ |
Αυτοτελείς Διδακτικές Δραστηριότητες | Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 7.5) |
Τύπος Μαθήματος | Ειδικού υποβάθρου, ανάπτυξη δεξιοτήτων. |
Προαπαιτούμενα Μαθήματα | |
Γλώσσα Διδασκαλίας και Εξετάσεων | Ελληνική |
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus | Ναι (στην Αγγλική γλώσσα) |
Ηλεκτρονική Σελίδα Μαθήματος (URL) | Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων. |
Μαθησιακά Αποτελέσματα
Μαθησιακά Αποτελέσματα |
Μετά την επιτυχή ολοκλήρωση του μαθήματος, οι φοιτητές θα μπορούν να:
|
---|---|
Γενικές Ικανότητες |
|
Περιεχόμενο Μαθήματος
Παραγώγιση στον Rn: Παράγωγος κατά Frechet, Παράγωγος κατά Gateaux. Η Μέθοδος του Νεύτωνα για τη λύση μη Γραμμικών Συστημάτων: Θεωρήματα Σταθερού Σημείου, Θεωρήματα Συστολής, Ταχύτητα Σύγκλισης της Μεθόδου του Νεύτωνα. Πολυωνυμική Παρεμβολή: Παρεμβολή Lagrange-Νεύτωνα, Παρεμβολή Hermite, Παρεμβολή με Τμηματικά Γραμμικές Συναρτήσεις, Παρεμβολή με Τμηματικά Συναρτήσεις Hermite, Παρεμβολή με Κυβικές Splines. Σφάλματα κατά την Παρεμβολή, Σύγκριση των Μεθόδων Παρεμβολής.
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
Τρόπος Παράδοσης | Στην τάξη | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών | |||||||||||
Οργάνωση Διδασκαλίας |
| ||||||||||
Αξιολόγηση Φοιτητών | Γραπτή εξέταση - Δημόσια Παρουσίαση. |
Συνιστώμενη Βιβλιογραφία
- Αριθμητική Ανάλυση, Β. Δουγαλής, Πανεπιστημίου Αθηνών.