Αριθμητική Ανάλυση (ΑΑ1): Διαφορά μεταξύ των αναθεωρήσεων
Από Wiki Τμήματος Μαθηματικών
| Γραμμή 68: | Γραμμή 68: | ||
=== Περιεχόμενο Μαθήματος === | === Περιεχόμενο Μαθήματος === | ||
Παραγώγιση στον | * Παραγώγιση στον R^n , παράγωγος κατά Fréchet, παράγωγος κατά Gateaux. Η μέθοδος του Νεύτωνα για τη λύση μη γραμμικών συστημάτων. Θεωρήματα σταθερού σημείου, θεωρήματα συστολής, ταχύτητα σύγκλισης της μεθόδου του Νεύτωνα. | ||
* Αριθμητική επίλυση συστημάτων συνήθων διαφορικών εξισώσεων. Μονοβηματικές και πολυβηματικές μέθοδοι. Συνέπεια, ευστάθεια, και σύγκλιση. Άκαμπτα προβλήματα. | |||
* Πολυωνυμική Παρεμβολή: Παρεμβολή Lagrange, Παρεμβολή Hermite, Παρεμβολή με γραμμικές και κυβικές splines. Εκτίμηση σφάλματος παρεμβολής. | |||
=== Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση === | === Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση === | ||
Αναθεώρηση της 21:59, 3 Οκτωβρίου 2022
Περιγράμματα Μεταπτυχιακών Μαθημάτων - Τμήμα Μαθηματικών
Γενικά
| Σχολή | Σχολή Θετικών Επιστημών |
|---|---|
| Τμήμα | Τμήμα Μαθηματικών |
| Επίπεδο Σπουδών | Μεταπτυχιακό |
| Κωδικός Μαθήματος | ΑΑ1 |
| Εξάμηνο | 1 |
| Τίτλος Μαθήματος | ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ |
| Αυτοτελείς Διδακτικές Δραστηριότητες | Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 7.5) |
| Τύπος Μαθήματος | Ειδικού υποβάθρου, ανάπτυξη δεξιοτήτων. |
| Προαπαιτούμενα Μαθήματα | |
| Γλώσσα Διδασκαλίας και Εξετάσεων | Ελληνική |
| Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus | Ναι (στην Αγγλική γλώσσα) |
| Ηλεκτρονική Σελίδα Μαθήματος (URL) | Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων. |
Μαθησιακά Αποτελέσματα
| Μαθησιακά Αποτελέσματα |
Μετά την επιτυχή ολοκλήρωση του μαθήματος, οι φοιτητές θα μπορούν να:
|
|---|---|
| Γενικές Ικανότητες |
|
Περιεχόμενο Μαθήματος
- Παραγώγιση στον R^n , παράγωγος κατά Fréchet, παράγωγος κατά Gateaux. Η μέθοδος του Νεύτωνα για τη λύση μη γραμμικών συστημάτων. Θεωρήματα σταθερού σημείου, θεωρήματα συστολής, ταχύτητα σύγκλισης της μεθόδου του Νεύτωνα.
- Αριθμητική επίλυση συστημάτων συνήθων διαφορικών εξισώσεων. Μονοβηματικές και πολυβηματικές μέθοδοι. Συνέπεια, ευστάθεια, και σύγκλιση. Άκαμπτα προβλήματα.
- Πολυωνυμική Παρεμβολή: Παρεμβολή Lagrange, Παρεμβολή Hermite, Παρεμβολή με γραμμικές και κυβικές splines. Εκτίμηση σφάλματος παρεμβολής.
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
| Τρόπος Παράδοσης | Στην τάξη | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών | |||||||||||
| Οργάνωση Διδασκαλίας |
| ||||||||||
| Αξιολόγηση Φοιτητών | Γραπτή εξέταση - Δημόσια Παρουσίαση. |
Συνιστώμενη Βιβλιογραφία
- Αριθμητική Ανάλυση, Β. Δουγαλής, Πανεπιστημίου Αθηνών.