Αριθμητική Επίλυση Διαφορικών Εξισώσεων με Μερικές Παραγώγους (ΜΑΕ882): Διαφορά μεταξύ των αναθεωρήσεων
Από Wiki Τμήματος Μαθηματικών
(Νέα σελίδα με 'Περιγράμματα Προπτυχιακών Μαθημάτων - [https://math.uoi.gr Τμήμα Μαθηματικών] === Γενικά === {| class="wikitable" |- ! Σχολή | Σχολή Θετικών Επιστημών |- ! Τμήμα | Τμήμα Μαθηματικών |- ! Επίπεδο Σπουδών | Προπτυχιακό |- ! Κωδικός Μαθήματος | MAE881 |- ! Εξάμηνο | 8 |- ! Τίτλος Μαθήματος | ΑΡΙ...') |
Χωρίς σύνοψη επεξεργασίας |
||
| Γραμμή 1: | Γραμμή 1: | ||
[[Περιγράμματα Προπτυχιακών Μαθημάτων]] | * [[xxx|English version]] | ||
* [[Περιγράμματα Προπτυχιακών Μαθημάτων]] | |||
* [https://math.uoi.gr Τμήμα Μαθηματικών] | |||
=== Γενικά === | === Γενικά === | ||
Αναθεώρηση της 09:40, 25 Νοεμβρίου 2022
Γενικά
| Σχολή | Σχολή Θετικών Επιστημών |
|---|---|
| Τμήμα | Τμήμα Μαθηματικών |
| Επίπεδο Σπουδών | Προπτυχιακό |
| Κωδικός Μαθήματος | MAE881 |
| Εξάμηνο | 8 |
| Τίτλος Μαθήματος | ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΜΕ ΜΕΡΙΚΕΣ ΠΑΡΑΓΩΓΟΥΣ |
| Αυτοτελείς Διδακτικές Δραστηριότητες | Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 6) |
| Τύπος Μαθήματος | Ειδικού υποβάθρου, ανάπτυξης δεξιοτήτων. |
| Προαπαιτούμενα Μαθήματα | |
| Γλώσσα Διδασκαλίας και Εξετάσεων | Ελληνική |
| Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus | Ναι (στην Αγγλική γλώσσα) |
| Ηλεκτρονική Σελίδα Μαθήματος (URL) | Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων. |
Μαθησιακά Αποτελέσματα
| Μαθησιακά Αποτελέσματα |
Το μάθημα είναι μια εισαγωγή στις βασικές αριθμητικές μεθόδους για την επίλυση Μερικών Διαφορικών Εξισώσεων (Μ.Δ.Ε.). Μετά την επιτυχή ολοκλήρωση του μαθήματος οι φοιτητές θα μπορούν να:
|
|---|---|
| Γενικές Ικανότητες |
|
Περιεχόμενο Μαθήματος
- Προσέγγιση παραγώγων με πεπερασμένες διαφορές.
- Το πρόβλημα δύο σημείων. Συνοριακές συνθήκες Dirichlet, Neumann, και Robin.
- Διακριτοποίηση του προβλήματος δύο σημείων με μεθόδους πεπερασμένων διαφορών. Συνέπεια και ευστάθεια των αριθμητικών μεθόδων. Η μέθοδος της ενέργειας. Τάξη ακρίβειας και σύγκλιση.
- Εισαγωγή στη μέθοδο των πεπερασμένων στοιχείων για τη λύση του προβλήματος δύο σημείων. Εκ των προτέρων και εκ των υστέρων εκτιμήσεις του σφάλματος. Υλοποίηση της μεθόδου πεπερασμένων στοιχείων.
- Μέθοδοι πεπερασμένων διαφορών και πεπερασμένων στοιχείων για την εξίσωση της θερμότητας. Η άμεση και η πεπλεγμένη μέθοδος του Euler. Η μέθοδος των Crank-Nicolson.
- Η μέθοδος των πεπερασμένων στοιχείων για ελλειπτικές και παραβολικές εξισώσεις σε πολλές διαστάσεις.
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
| Τρόπος Παράδοσης | Πρόσωπο με πρόσωπο. | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών |
| ||||||||||||
| Οργάνωση Διδασκαλίας |
| ||||||||||||
| Αξιολόγηση Φοιτητών |
|
Συνιστώμενη Βιβλιογραφία
Δείτε την υπηρεσία Εύδοξος ή το τοπικό αποθετήριο του Τμήματος Μαθηματικών για τα παρεχόμενα συγγράμματα ανά ακαδημαϊκό έτος. Συγγράμματα και άλλες πηγές εκτός της υπηρεσίας Εύδοξος: