Infinitesimal Calculus III (MAY311): Διαφορά μεταξύ των αναθεωρήσεων
Από Wiki Τμήματος Μαθηματικών
Χωρίς σύνοψη επεξεργασίας |
|||
Γραμμή 120: | Γραμμή 120: | ||
=== Attached Bibliography === | === Attached Bibliography === | ||
See [https://service.eudoxus.gr/public/departments#20 Eudoxus]. Additionally: | |||
* [https://repository.kallipos.gr/handle/11419/1201 Giannoulis, I. (2015), Διανυσματική ανάλυση, Kallipos, Open Academic Editions] | |||
Αναθεώρηση της 22:03, 21 Ιουλίου 2022
Undergraduate Courses Outlines - Department of Mathematics
General
School |
School of Science |
---|---|
Academic Unit |
Department of Mathematics |
Level of Studies |
Undergraduate |
Course Code |
MAΥ311 |
Semester | 3 |
Course Title |
Infinitesimal Calculus III |
Independent Teaching Activities |
Lectures, laboratory exercises (Weekly Teaching Hours: 5, Credits: 7.5) |
Course Type |
General Background |
Prerequisite Courses | - |
Language of Instruction and Examinations |
Greek, English |
Is the Course Offered to Erasmus Students |
Yes (in English) |
Course Website (URL) |
Learning Outcomes
Learning outcomes |
The main learning outcomes are the:
|
---|---|
General Competences |
|
Syllabus
- Algebraic and topological structure of the Euclidean space R^n and geometric representation of the two- and three-dimensional space. Vector-sequences and their use concerning the topology of R^n.
- Real- and Vector-valued functions of several variables. Limits and continuity of functions.
- Partial derivatives. Partially differentiable and differentiable functions. Directional derivative. Differential operators and curves in R^n.
- Higher order partial derivatives. Taylor Theorem. Local and global extrema of real-valued functions. Implicit Function Theorem. Inverse Function Theorem. Constrained extrema.
Teaching and Learning Methods - Evaluation
Delivery |
Classroom (face-to-face) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Use of Information and Communications Technology |
| ||||||||||
Teaching Methods |
| ||||||||||
Student Performance Evaluation |
Final written exam in Greek (in case of Erasmus students in English) |
Attached Bibliography
See Eudoxus. Additionally: