Θεωρία Τελεστών (AN9): Διαφορά μεταξύ των αναθεωρήσεων
Από Wiki Τμήματος Μαθηματικών
Χωρίς σύνοψη επεξεργασίας |
Χωρίς σύνοψη επεξεργασίας |
||
Γραμμή 1: | Γραμμή 1: | ||
* [[ | * [[Operator Theory (AN9)|English version]] | ||
* [[Περιγράμματα Μεταπτυχιακών Μαθημάτων]] | * [[Περιγράμματα Μεταπτυχιακών Μαθημάτων]] | ||
* [https://math.uoi.gr Τμήμα Μαθηματικών] | * [https://math.uoi.gr Τμήμα Μαθηματικών] |
Αναθεώρηση της 16:53, 25 Νοεμβρίου 2022
Γενικά
Σχολή | Σχολή Θετικών Επιστημών |
---|---|
Τμήμα | Τμήμα Μαθηματικών |
Επίπεδο Σπουδών | Μεταπτυχιακό |
Κωδικός Μαθήματος | ΑΝ9 |
Εξάμηνο | 2 |
Τίτλος Μαθήματος | ΘΕΩΡΙΑ ΤΕΛΕΣΤΩΝ |
Αυτοτελείς Διδακτικές Δραστηριότητες | Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 7.5) |
Τύπος Μαθήματος | Μάθημα Ειδίκευσης |
Προαπαιτούμενα Μαθήματα | Συναρτησιακή Ανάλυση |
Γλώσσα Διδασκαλίας και Εξετάσεων | Ελληνική |
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus | Ναι (στην Αγγλική γλώσσα) |
Ηλεκτρονική Σελίδα Μαθήματος (URL) | Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων. |
Μαθησιακά Αποτελέσματα
Μαθησιακά Αποτελέσματα | Στόχος του μαθήματος είναι η απόκτηση από τους μεταπτυχιακούς φοιτητές ειδικού υποβάθρου σε θέματα της θεωρίας τελεστών γενικότερα σε χώρους Banach και ειδικότερα σε χώρους Hilbert. |
---|---|
Γενικές Ικανότητες | Το μάθημα αποσκοπεί στο να αποκτήσει ο μεταπτυχιακός φοιτητής την ικανότητα στην ανάλυση και σύνθεση προχωρημένης εννοιών της Θεωρίας Τελεστών. Ο στόχος είναι να αποκτήσει τα εφόδια για αυτόνομη και ομαδική εργασία σε διεπιστημονικό περιβάλλον. |
Περιεχόμενο Μαθήματος
Φραγμένοι γραμμικοί τελεστές σε χώρους Banach και χώρους Hilbert. Φάσμα τελεστή, φάσμα αυτοσυζυγούς τελεστή. Συναρτήσεις αυτοσυζυγών τελεστών, φασματικό θεώρημα. Τοπολογίες σε χώρους τελεστών.
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
Τρόπος Παράδοσης | Παράδοση στον πίνακα. | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών | Επικοινωνία με τους φοιτητές μέσω e-mail. | ||||||||||
Οργάνωση Διδασκαλίας |
| ||||||||||
Αξιολόγηση Φοιτητών | Γραπτή εξέταση στο τέλος του εξαμήνου (υποχρεωτικά), παράδοση εργασιών και ασκήσεων στη διάρκεια του εξαμήνου (υποχρεωτικά), διάλεξη-παρουσίαση στον πίνακα από τον φοιτητή (προεραιτική). |
Συνιστώμενη Βιβλιογραφία
- Y. Abramovic C. Aliprantis, An invitation to Operator Theory.
- J. Conway, A course in Functional Analysis.
- R. Douglas, Banach Algebra Techniques in Operator Theory.
- V. Sunder Functional Analysis, Spectral Theory.
- W. Rudin Functional Analysis.