Μιγαδικές Συναρτήσεις I (MAY611): Διαφορά μεταξύ των αναθεωρήσεων
Χωρίς σύνοψη επεξεργασίας |
(→Γενικά) |
||
Γραμμή 28: | Γραμμή 28: | ||
|- | |- | ||
! Τύπος Μαθήματος | ! Τύπος Μαθήματος | ||
| | | Ειδικού Υποβάθρου | ||
|- | |- | ||
! Προαπαιτούμενα Μαθήματα | ! Προαπαιτούμενα Μαθήματα |
Αναθεώρηση της 04:31, 12 Μαΐου 2023
- English version
- Περιγράμματα Προπτυχιακών Μαθημάτων
- Τροποποίηση Περιγράμματος (η δυνατότητα αυτή απευθύνεται αποκλειστικά στα μέλη ΔΕΠ του Τμήματος)
Γενικά
Σχολή | Σχολή Θετικών Επιστημών |
---|---|
Τμήμα | Τμήμα Μαθηματικών |
Επίπεδο Σπουδών | Προπτυχιακό |
Κωδικός Μαθήματος | MAY611 |
Εξάμηνο | 6 |
Τίτλος Μαθήματος | ΜΙΓΑΔΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ I |
Αυτοτελείς Διδακτικές Δραστηριότητες | Διαλέξεις, παρουσιάσεις και Ασκήσεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 5, Πιστωτικές Μονάδες: 7.5) |
Τύπος Μαθήματος | Ειδικού Υποβάθρου |
Προαπαιτούμενα Μαθήματα | |
Γλώσσα Διδασκαλίας και Εξετάσεων | Ελληνική |
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus | Ναι (στην Αγγλική γλώσσα) |
Ηλεκτρονική Σελίδα Μαθήματος (URL) | Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων. |
Μαθησιακά Αποτελέσματα
Μαθησιακά Αποτελέσματα | Αποτελεί το βασικό υποχρεωτικό μάθημα Μαθηματικής Ανάλυσης στις έννοιες του μιγαδικού χώρου. Συγκεκριμένα, ο φοιτητής αρχίζει να αντιλαμβάνεται την έννεοια του μιγαδικού αριθμού και γνωρίζει τις ιδιότητες αυτού. Επίσης, γνωρίζει τη χρησιμότητα των μιγαδικών αριθμών στην αντιμετώπιση προβλημάτων στον πραγματικό χώρο. Ανακαλύπτει πώς ορίζονται οι μιγαδικές ανάλογες των στοιχειωδών συναρτήσεων και στη συνέχεια βλέπει το μιγαδικό ολοκλήρωμα ως μια επέκταση του αντίστοιχου των πραγματικών συναρτήσεων. Αναγνωρίζει τα πλεονεκτίματα των ολόμορφων συναρτήσεων και τις ιδιότητες τούτων. Τέλος, διαπιστώνει τη μεγάλη χρησιμότητα της μιγαδικής ανάλυσης στην επίλυση πραγματικών προβλημάτων και ιδιαίτερα στον υπολογισμό δύσκολων ολοκληρωμάτων πραγματικών συναρτήσεων. |
---|---|
Γενικές Ικανότητες |
|
Περιεχόμενο Μαθήματος
Ορισμός του Συνόλου των Μιγαδικών αριθμών, το Μιγαδικό επίπεδο, Ρίζες, Ευθύγραμμα Τμήματα, Τοπολογία, Σύγκλιση, Σφαίρα του Riemann, αναλυτικές ιδιότητες Συναρτήσεων, Δυναμοσειρές, Στοιχειώδεις μιγαδικές συναρτήσεις (ρητές συναρτήσεις, η εκθετική συνάρτηση, τριγωνομετρικές συναρτήσεις, υπερβολικές μιγαδικές συναρτήσεις, λογάριθμος, η συνάρτηση Δύναμη, η γενική εκθετική συνάρτηση), επικαμπύλια ολοκληρώματα, καμπύλες, σύμμορφες απεικονίσεις, ομοτοπικές Καμπύλες, τοπικές ιδιότητες συναρτήσεων, βασικά θεωρήματα, διατήρηση ολοκληρωμάτων, δείκτης στροφής, γενικά συμπεράσματα, ανώμαλα σημεία, σειρές Laurent, ολοκληρωτικά υπόλοιπα, θεώρημα Cauchy για τα ολοκληρωτικά υπόλοιπα (ολοκλήρωμα τριγονομετρικών συναρτήσεων, ολοκλήρωμα γενικευμένο στο άπειρο, Ειδικές περιπτώσεις).
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
Τρόπος Παράδοσης | Πρόσωπο με πρόσωπο | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών | Χρήση Εξειδικευμένου Λογισμικού για την παρουσίαση και επικοινωνία και για την παράδοση ασκήσεων | ||||||||||
Οργάνωση Διδασκαλίας |
| ||||||||||
Αξιολόγηση Φοιτητών | Γραπτή τελική εξέταση (100%) που περιλαμβάνει:
|
Συνιστώμενη Βιβλιογραφία
Δείτε την υπηρεσία Εύδοξος ή το τοπικό αποθετήριο του Τμήματος Μαθηματικών για τα παρεχόμενα συγγράμματα ανά ακαδημαϊκό έτος. Συγγράμματα και άλλες πηγές εκτός της υπηρεσίας Εύδοξος:
- Γιαννούλης, Ι. (2024). Μιγαδική Ανάλυση [Προπτυχιακό εγχειρίδιο]. Κάλλιπος, Ανοικτές Ακαδημαϊκές Εκδόσεις. http://dx.doi.org/10.57713/kallipos-408
- R. Remmert. Theory of Complex Functions. Springer, 1998.
- S. Lang. Complex Analysis. Fourth Edition. Springer, 1999.