Biomathematics (MAE546A): Διαφορά μεταξύ των αναθεωρήσεων

Από Wiki Τμήματος Μαθηματικών
(Νέα σελίδα με '=== General === {| class="wikitable" |- ! School | School of Science |- ! Academic Unit | Department of Mathematics |- ! Level of Studies | Undergraduate |- ! Course Code | ΜΑΕ546 |- ! Semester | 5 |- ! Course Title | Biomathematics |- ! Independent Teaching Activities | Lectures (Weekly Teaching Hours: 3, Credits: 6) |- ! Course Type | Special Background |- ! Prerequisite Courses | - |- ! Language of Instruction and Examinations | Greek |- ! Is the Course Offe...')
 
Χωρίς σύνοψη επεξεργασίας
Γραμμή 1: Γραμμή 1:
[[Undergraduate Courses Outlines]] - [https://math.uoi.gr  Department of Mathematics]
=== General ===
=== General ===
{| class="wikitable"
{| class="wikitable"

Αναθεώρηση της 19:00, 1 Ιουλίου 2022

Undergraduate Courses Outlines - Department of Mathematics

General

School

School of Science

Academic Unit

Department of Mathematics

Level of Studies

Undergraduate

Course Code

ΜΑΕ546

Semester

5

Course Title

Biomathematics

Independent Teaching Activities

Lectures (Weekly Teaching Hours: 3, Credits: 6)

Course Type

Special Background

Prerequisite Courses -
Language of Instruction and Examinations

Greek

Is the Course Offered to Erasmus Students

Yes (in English)

Course Website (URL) -

Learning Outcomes

Learning outcomes

The course is an introduction to the concepts of Biomathematics. The objectives of the course are:

  • Development of the theoretical background in matters relating to biomathematics.
  • Ability of the student to apply the basic concepts of biomathematics.
  • Upon completion of this course the student will be able to solve with analytical and numerical methods simple problems of biomathematics and deepen further understanding of such methods.
General Competences

The course aims to enable the undergraduate students to develop basic knowledge of Biomathematics and in general of Applied Mathematics. The student will be able to cope with problems of Biomathematics giving the opportunity to work in an international multidisciplinary environment.

Syllabus

Short introduction of Algebra, Analysis and Differential Equations, Differential equations of biofluids motion, Applications of mathematical modeling of biofluids in the human body and in the arterial system, Analytical and numerical techniques for solving the differential equations describing biofluids flows, Algbraic statistics for Computational Biology: Algebraic varieties and Groebner bases, Toric ideals and varieties, Linear and toric models, Markov bases, Markov bases for hierarchical models, Contigency tables, Phylogenetic Models.

Teaching and Learning Methods - Evaluation

Delivery

In class

Use of Information and Communications Technology -
Teaching Methods
Activity Semester Workload
Lectures 39
Study of theory 78
Home exercises 33
Course total 150
Student Performance Evaluation
  • Weekly assignments
  • Final project
  • Written examination at the end of the semester

Attached Bibliography

  • Applied Fluid Mechanics, D. G. Papanikas, 4th Edition, 2010, Editor: F. Papanikas & Co, G. P. (in Greek)
  • Computational Fluid Mechanics, J. Soulis, 1 Edition, 2008, Editor: X. N. Aivazis (in Greek)
  • Algebraic Statistics for Computational Biology, L. Pachter, B. Sturmfels, 2005, Editor: Cambridge University Press
  • Cardiovascular Mathematics, Modeling and simulation of the circulatory system, Formaggia L., Quarteroni A., Veneziani A., 2009, Editor: Springer