Απειροστικός Λογισμός III (MAY311): Διαφορά μεταξύ των αναθεωρήσεων
Από Wiki Τμήματος Μαθηματικών
Γραμμή 92: | Γραμμή 92: | ||
|- | |- | ||
| Επίλυση Ασκήσεων - εργασίες | | Επίλυση Ασκήσεων - εργασίες | ||
| 22 | | 22.5 | ||
|- | |- | ||
| Σύνολο Μαθήματος | | Σύνολο Μαθήματος |
Αναθεώρηση της 12:10, 31 Αυγούστου 2022
Περιγράμματα Προπτυχιακών Μαθημάτων - Τμήμα Μαθηματικών
Γενικά
Σχολή | Σχολή Θετικών Επιστημών |
---|---|
Τμήμα | Τμήμα Μαθηματικών |
Επίπεδο Σπουδών | Προπτυχιακό |
Κωδικός Μαθήματος | MAY311 |
Εξάμηνο | 3 |
Τίτλος Μαθήματος | ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ III |
Αυτοτελείς Διδακτικές Δραστηριότητες | Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 5, Πιστωτικές Μονάδες: 7.5) |
Τύπος Μαθήματος | Γενικού Υποβάθρου |
Προαπαιτούμενα Μαθήματα | |
Γλώσσα Διδασκαλίας και Εξετάσεων | Ελληνική |
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus | Ναι (στην Αγγλική γλώσσα) |
Ηλεκτρονική Σελίδα Μαθήματος (URL) | Δείτε το eCourse, το Σύστημα Διαχείρισης Μάθησης του Πανεπιστημίου Ιωαννίνων. |
Μαθησιακά Αποτελέσματα
Μαθησιακά Αποτελέσματα | Το κύριο μαθησιακό αποτέλεσμα είναι η:
|
---|---|
Γενικές Ικανότητες |
|
Περιεχόμενο Μαθήματος
- Αλγεβρική και τυπολογική δομή του ευκλείδειου χώρου r^n και γεωμετρική αναπαράσταση του δισδιάστατου και τρισδιάστατου χώρου. Ακολουθίες διανυσμάτων και χρήση τους στην τοπολογία του r^n.
- Συναρτήσεις περισσοτέρων μεταβλητών (πραγματικές και διανυσματικές). Όρια και συνέχεια συναρτήσεων.
- Μερικές παράγωγοι. Μερικώς διαφορίσιμες και διαφορίσιμες συναρτήσεις. Παράγωγος κατά κατεύθυνση. Διαφορικοί τελεστές και καμπύλες στον r^n.
- Μερικές παράγωγοι ανώτερης τάξης. Θεώρημα taylor. Τοπικά και ολικά ακρότατα πραγματικών συναρτήσεων. Θεώρημα πεπλεγμένης συνάρτησης, θεώρημα αντίστροφης συνάρτησης, ακρότατα υπό συνθήκη.
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
Τρόπος Παράδοσης | Παράδοση στον πίνακα | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών | Στην ιστοσελίδα του μαθήματος διατίθεται διδακτικό υλικό (σημειώσεις και θέματα προηγούμενων εξετάσεων). Οι φοιτητές μπορούν να επικοινωνήσουν μέσω e-mail με τον διδάσκοντα. | ||||||||||
Οργάνωση Διδασκαλίας |
| ||||||||||
Αξιολόγηση Φοιτητών | Γραπτή εξέταση |
Συνιστώμενη Βιβλιογραφία
Δείτε την υπηρεσία Εύδοξος ή το τοπικό αποθετήριο του Τμήματος Μαθηματικών για τα παρεχόμενα συγγράμματα ανά ακαδημαϊκό έτος. Συγγράμματα και άλλες πηγές εκτός της υπηρεσίας Εύδοξος: