Μη Παραμετρική Στατιστική (ΣEE14): Διαφορά μεταξύ των αναθεωρήσεων

Από Wiki Τμήματος Μαθηματικών
(Νέα σελίδα με 'Περιγράμματα Μεταπτυχιακών Μαθημάτων - [https://math.uoi.gr Τμήμα Μαθηματικών] === Γενικά === {| class="wikitable" |- ! Σχολή | Σχολή Θετικών Επιστημών |- ! Τμήμα | Τμήμα Μαθηματικών |- ! Επίπεδο Σπουδών | Μεταπτυχιακό |- ! Κωδικός Μαθήματος | ΣEE14 |- ! Εξάμηνο | 2 |- ! Τίτλος Μαθήματος | Μ...')
 
μ (Αντικατάσταση κειμένου - «Σύστημα Διαχείρισης Μάθησης» σε «Πλατφόρμα Ασύγχρονης Εκπαίδευσης»)
Γραμμή 39: Γραμμή 39:
|-
|-
! Ηλεκτρονική Σελίδα Μαθήματος (URL)
! Ηλεκτρονική Σελίδα Μαθήματος (URL)
| Δείτε το [https://ecourse.uoi.gr/ eCourse], το Σύστημα Διαχείρισης Μάθησης του Πανεπιστημίου Ιωαννίνων.
| Δείτε το [https://ecourse.uoi.gr/ eCourse], το Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων.
|}
|}



Αναθεώρηση της 21:34, 29 Σεπτεμβρίου 2022

Περιγράμματα Μεταπτυχιακών Μαθημάτων - Τμήμα Μαθηματικών

Γενικά

Σχολή Σχολή Θετικών Επιστημών
Τμήμα Τμήμα Μαθηματικών
Επίπεδο Σπουδών Μεταπτυχιακό
Κωδικός Μαθήματος ΣEE14
Εξάμηνο 2
Τίτλος Μαθήματος ΜΗ ΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
Αυτοτελείς Διδακτικές Δραστηριότητες Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 7.5)
Τύπος Μαθήματος Μάθημα Ειδίκευσης
Προαπαιτούμενα Μαθήματα
Γλώσσα Διδασκαλίας και Εξετάσεων Ελληνική
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus Ναι (στην Αγγλική γλώσσα)
Ηλεκτρονική Σελίδα Μαθήματος (URL) Δείτε το eCourse, το Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων.

Μαθησιακά Αποτελέσματα

Μαθησιακά Αποτελέσματα Με την επιτυχή παρακολούθηση του μαθήματος ο φοιτητής θα είναι σε θέση να
  • κατανοεί τις μη παραμετρικές τεχνικές
  • εξηγεί τις θεμελιώδεις αρχές του smoothing και της μη παραμετρικής εκτίμησης καμπύλης (nonparametric curve estimation);
  • εκτιμά συναρτήσεις ενδιαφέροντος και να διεξάγει ελέγχους για αυτές, χωρίς την υιοθέτηση ισχυρών υποθέσεων (βλέπε παραμετρικές μεθοδολογίες)
  • χρησιμοποιεί στην πράξη τις σύγχρονες μεθοδολογίες της μη παραμετρικής στατιστικής.
Γενικές Ικανότητες
  • Αυτόνομη εργασία
  • Ομαδική εργασία σε κάποιες περιπτώσεις
  • Λήψη αποφάσεων
  • Προαγωγή της ελεύθερης, δημιουργικής και επαγωγικής σκέψης
  • Σύνθεση δεδομένων και πληροφοριών.

Περιεχόμενο Μαθήματος

Παρουσίαση και εισαγωγή στις μη παραμετρικές μεθόδους, Μη παραμετρική εκτίμησης της α.σ.κ και bootstrap. Μη παραμετρική εκτίμηση της σ.π.π. (ιστογράμματα, kernel smoothing). Έλεγχοι καλής προσαρμογής και πολυδιάστατα προβλήματα Ημιπαραμετρική παλινδρόμηση. Projection pursuit regression.

Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση

Τρόπος Παράδοσης Πρόσωπο με πρόσωπο στο εργαστήριο του Τμήματος
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών
  • Στατιστικά Πακέτα
  • Χρήση Τ.Π.Ε. στην επικοινωνία με τους φοιτητές καθώς και στην παράδοση εργασιών
Οργάνωση Διδασκαλίας
Δραστηριότητα Φόρτος Εργασίας Εξαμήνου
Διαλέξεις -Εργαστήριο 39
Αυτοτελής Μελέτη 78
Επίλυση ασκήσεων-εργασίες 70.5
Σύνολο Μαθήματος 187.5
Αξιολόγηση Φοιτητών Γραπτή τελική εξέταση στα Ελληνικά (σε περίπτωση φοιτητών Erasmus στην Αγγλική γλώσσα) η οποία περιλαμβάνει την ανάλυση τόσο πραγματικών όσο και εκπαιδευτικών συνόλων δεδομένων. Κατά τη διάρκεια του εξαμήνου δίνονται υποχρεωτικές, συνήθως ατομικές, εργασίες, οι οποίες συνυπολογίζονται στον τελικό βαθμό.

Συνιστώμενη Βιβλιογραφία

  • Silverman, B. (1986). Density Estimation for Statistics and Data Analysis, Chapman and Hall.
  • Wand, M.P. and Jones, M.C. (1994). Kernel smoothing, First Edition, Chapman and Hall.
  • Simonoff, J.S. (1996). Smoothing Methods in Statistics, Springer.
  • Fan, J. and Gijbels, I. (1996). Local Polynomial Modelling and Its Applications, Chapman and Hall.
  • Loader, C. (1999). Local Regression and Likelihood, Springer.
  • Scott, D. (2015). Multivariate Density Estimation: Theory, Practice, and Visualization, Second edition, Wiley.
  • Takezawa, K. (2006). Introduction to Nonparametric Regression, Wiley.
  • Wasserman, L. (2006). All of Nonparametric Statistics, Springer.
  • Klemela, J. (2009). Smoothing of Multivariate Data: Density Estimation and Visualization, Wiley.
  • Tsybakov, A.B. (2009). Introduction to Nonparametric Estimation Springer.
  • Chacón, J.E. and Duong, T. (2018). Multivariate Kernel Smoothing and its Applications, Taylor and Francis.
  • [Περιοδικό / Journal] Journal of Nonparametric Statistics.