Αρμονική Ανάλυση (MAE718): Διαφορά μεταξύ των αναθεωρήσεων
(Νέα σελίδα με 'Περιγράμματα Προπτυχιακών Μαθημάτων - [https://math.uoi.gr Τμήμα Μαθηματικών] === Γενικά === {| class="wikitable" |- ! Σχολή | Σχολή Θετικών Επιστημών |- ! Τμήμα | Τμήμα Μαθηματικών |- ! Επίπεδο Σπουδών | Προπτυχιακό |- ! Κωδικός Μαθήματος | MAE718 |- ! Εξάμηνο | 7 |- ! Τίτλος Μαθήματος | ΑΡΜ...') |
(→Γενικά) |
||
Γραμμή 38: | Γραμμή 38: | ||
|- | |- | ||
! Ηλεκτρονική Σελίδα Μαθήματος (URL) | ! Ηλεκτρονική Σελίδα Μαθήματος (URL) | ||
| Δείτε το [https://ecourse.uoi.gr/ eCourse], | | Δείτε το [https://ecourse.uoi.gr/ eCourse], την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων. | ||
|} | |} | ||
Αναθεώρηση της 22:41, 29 Σεπτεμβρίου 2022
Περιγράμματα Προπτυχιακών Μαθημάτων - Τμήμα Μαθηματικών
Γενικά
Σχολή | Σχολή Θετικών Επιστημών |
---|---|
Τμήμα | Τμήμα Μαθηματικών |
Επίπεδο Σπουδών | Προπτυχιακό |
Κωδικός Μαθήματος | MAE718 |
Εξάμηνο | 7 |
Τίτλος Μαθήματος | ΑΡΜΟΝΙΚΗ ΑΝΑΛΥΣΗ |
Αυτοτελείς Διδακτικές Δραστηριότητες | Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 6) |
Τύπος Μαθήματος | Ειδικού Υποβάθρου |
Προαπαιτούμενα Μαθήματα | |
Γλώσσα Διδασκαλίας και Εξετάσεων | Ελληνική |
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus | Ναι (στην Αγγλική γλώσσα) |
Ηλεκτρονική Σελίδα Μαθήματος (URL) | Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων. |
Μαθησιακά Αποτελέσματα
Μαθησιακά Αποτελέσματα | Οι στόχος του μαθήματος είναι η απόκτηση του θεωρητικού υποβάθρου από τον μεταπτυχιακό φοιτητή στις θεωρία των σειρών Fourier. |
---|---|
Γενικές Ικανότητες | Το μάθημα αποσκοπεί στην απόκτηση της ικανότητας από τον μεταπτυχιακό φοιτητή στην ανάλυση και σύνθεση βασικών γνώσεων της Αρμονικής Ανάλυσης. |
Περιεχόμενο Μαθήματος
Τριγωνομετρικά πολυώνυμα, μερικά αθροίσματα σειράς Fourier μίας συνάρτησης και -συμπεριφορά, ανισότητα Bessel, Λήμμα Riemann-Lebesgue, ταυτότητα του Parseval για Riemann ολοκληρώσιμες συναρτήσεις στο , μιγαδικές Riemann ολοκληρώσιμες συναρτήσεις ορισμένες σε διάστημα, συντελεστές και σειρά Fourier, πυρήνας του Dirichlet, κριτήρια για ομοιόμορφη σύγκλιση της σειράς Fourier, συνέλιξη συναρτήσεων και πυρήνες προσέγγισης της μονάδος, ο πυρήνας του Fejer, θεώρημα Fejer, πυρήνας του Poisson, Abel αθροισιμότητα σειράς Fourier, εφαρμογές.
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
Τρόπος Παράδοσης | Πρόσωπο με πρόσωπο | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών | |||||||||||
Οργάνωση Διδασκαλίας |
| ||||||||||
Αξιολόγηση Φοιτητών | Γραπτή εξέταση στο τέλος του εξαμήνου. |
Συνιστώμενη Βιβλιογραφία
Δείτε την υπηρεσία Εύδοξος ή το τοπικό αποθετήριο του Τμήματος Μαθηματικών για τα παρεχόμενα συγγράμματα ανά ακαδημαϊκό έτος. Συγγράμματα και άλλες πηγές εκτός της υπηρεσίας Εύδοξος:
- Yitzhak Katznelson, An Introduction to Harmonic Analysis, Dover Edition.
- Elias M. Stein, Rami Shakarchi, Fourier Analysis, An Introduction, Princeton University Press.