Εισαγωγή στη Στοχαστική Ανάλυση (ΜΑE818): Διαφορά μεταξύ των αναθεωρήσεων
Γραμμή 65: | Γραμμή 65: | ||
=== Περιεχόμενο Μαθήματος === | === Περιεχόμενο Μαθήματος === | ||
Βασικές έννοιες στοχαστικών διαδικασιών σε διακριτό και συνεχή χρόνο: Ορισμοί, σχέσεις ισότητας και κατανομές στοχαστικών διαδικασιών, διαδικασίες με συνεχή μονοπάτια. (σ)-άλγεβρες, διηθήσεις, χρόνοι διακοπής, δεσμευμένη μέση τιμή. Βασικές κλάσεις στοχαστικών διαδικασιών: Ισόρροπες διαδικασίες (martingales), διαδικασίες Levy, μαρκοβιανές διαδικασίες, συναρτήσεις πιθανοτήτων μετάβασης και γεννήτορες. Κίνηση Brown: Ορισμός, ύπαρξη και μοναδικότητα, βασικές ιδιότητες (π.χ. αναλυτικές ιδιότητες μονοπατιών, αρχή της ανάκλασης, ισχυρή μαρκοβιανή ιδιότητα, σχέση με την εξίσωση της θερμότητας), ισόρροπες διαδικασίες σχετιζόμενες με την κίνηση Brown και χρόνοι εξόδου. Στοχαστικός Λογισμός: Σταδιακή κατασκευή και επέκταση του Ολοκληρώματος του Ito ως προς την κίνηση Brown, το ολοκλήρωμα ως στοχαστική διαδικασία, ο τύπος του Ito, στοχαστικές διαφορικές εξισώσεις (ΣΔΕ), ύπαρξη και μοναδικότητα, επίλυση ειδικών μορφών ΣΔΕ. Εφαρμογές στις διαφορικές εξισώσεις με μερικές παραγώγους: Αρμονικές συναρτήσεις και το πρόβλημα εξόδου για την κίνηση Brown, πιθανοθεωρητική αναπαράσταση λύσεων, τύπος Feynman-Kac. Ο τελεστής Laplace ως γεννήτορας της κίνησης Brown. Διαδικασίες Ito και ο γεννήτορας τους. Εφαρμογές στα χρηματοοικονομικά: Χαρτοφυλάκια και εξισορροπητική κερδοσκοπία (arbitrage), ευρωπαϊκά παράγωγα, εξίσωση Black-Scholes | |||
. | |||
=== Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση === | === Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση === |
Αναθεώρηση της 17:45, 5 Απριλίου 2023
- English version
- Περιγράμματα Προπτυχιακών Μαθημάτων
- Τροποποίηση Περιγράμματος (η δυνατότητα αυτή απευθύνεται αποκλειστικά στα μέλη ΔΕΠ του Τμήματος)
Γενικά
Σχολή | Σχολή Θετικών Επιστημών |
---|---|
Τμήμα | Τμήμα Μαθηματικών |
Επίπεδο Σπουδών | Προπτυχιακό |
Κωδικός Μαθήματος | MAE818 |
Εξάμηνο | 8 |
Τίτλος Μαθήματος | Εισαγωγή στη Στοχαστική Ανάλυση |
Αυτοτελείς Διδακτικές Δραστηριότητες | Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 6) |
Τύπος Μαθήματος | Ειδικού Υποβάθρου |
Προαπαιτούμενα Μαθήματα | |
Γλώσσα Διδασκαλίας και Εξετάσεων | Ελληνική |
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus | Ναι (στην Αγγλική γλώσσα) |
Ηλεκτρονική Σελίδα Μαθήματος (URL) | Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων. |
Μαθησιακά Αποτελέσματα
Μαθησιακά Αποτελέσματα |
Η Στοχαστική Ανάλυση είναι κλάδος των μαθηματικών που έχει ως αντικείμενο τη μελέτη στοχαστικών διαδικασιών με μη-διαφορίσιμα μονοπάτια. Ένα από τα βασικά της εργαλεία της είναι το στοχαστικό ολοκλήρωμα του Ito. Μέσω αυτού ορίζονται οι στοχαστικές διαφορικές εξισώσεις, οι οποίες χρησιμοποιούνται στη μοντελοποίηση και τη μελέτη τυχαίων φαινομένων συνεχούς χρόνου. Η Στοχαστική Ανάλυση βρίσκει εφαρμογές σε περιοχές όπως η Φυσική και τα Χρηματοοικονομικά. Στόχος είναι οι φοιτητές να έχουν αποκτήσει μετά την παρακολούθηση του μαθήματος μία πρώτη εξοικείωση με τη Στοχαστική Ανάλυση και συγκεκριμένα με:
|
---|---|
Γενικές Ικανότητες |
|
Περιεχόμενο Μαθήματος
Βασικές έννοιες στοχαστικών διαδικασιών σε διακριτό και συνεχή χρόνο: Ορισμοί, σχέσεις ισότητας και κατανομές στοχαστικών διαδικασιών, διαδικασίες με συνεχή μονοπάτια. (σ)-άλγεβρες, διηθήσεις, χρόνοι διακοπής, δεσμευμένη μέση τιμή. Βασικές κλάσεις στοχαστικών διαδικασιών: Ισόρροπες διαδικασίες (martingales), διαδικασίες Levy, μαρκοβιανές διαδικασίες, συναρτήσεις πιθανοτήτων μετάβασης και γεννήτορες. Κίνηση Brown: Ορισμός, ύπαρξη και μοναδικότητα, βασικές ιδιότητες (π.χ. αναλυτικές ιδιότητες μονοπατιών, αρχή της ανάκλασης, ισχυρή μαρκοβιανή ιδιότητα, σχέση με την εξίσωση της θερμότητας), ισόρροπες διαδικασίες σχετιζόμενες με την κίνηση Brown και χρόνοι εξόδου. Στοχαστικός Λογισμός: Σταδιακή κατασκευή και επέκταση του Ολοκληρώματος του Ito ως προς την κίνηση Brown, το ολοκλήρωμα ως στοχαστική διαδικασία, ο τύπος του Ito, στοχαστικές διαφορικές εξισώσεις (ΣΔΕ), ύπαρξη και μοναδικότητα, επίλυση ειδικών μορφών ΣΔΕ. Εφαρμογές στις διαφορικές εξισώσεις με μερικές παραγώγους: Αρμονικές συναρτήσεις και το πρόβλημα εξόδου για την κίνηση Brown, πιθανοθεωρητική αναπαράσταση λύσεων, τύπος Feynman-Kac. Ο τελεστής Laplace ως γεννήτορας της κίνησης Brown. Διαδικασίες Ito και ο γεννήτορας τους. Εφαρμογές στα χρηματοοικονομικά: Χαρτοφυλάκια και εξισορροπητική κερδοσκοπία (arbitrage), ευρωπαϊκά παράγωγα, εξίσωση Black-Scholes .
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
Τρόπος Παράδοσης | Διαλέξεις | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών | - | ||||||||||
Οργάνωση Διδασκαλίας |
| ||||||||||
Αξιολόγηση Φοιτητών | Η αξιολόγηση των φοιτητών θα γίνει με εβδομαδιαίες ασκήσεις, πρόοδο και τελική εξέταση. |
Συνιστώμενη Βιβλιογραφία
Δείτε την υπηρεσία Εύδοξος ή το τοπικό αποθετήριο του Τμήματος Μαθηματικών για τα παρεχόμενα συγγράμματα ανά ακαδημαϊκό έτος. Συγγράμματα και άλλες πηγές εκτός της υπηρεσίας Εύδοξος:
- David Williams, Probability with Martingales of Cambridge Mathematical Textbooks, Cambridge University Press, 1990.
- S.R.S. Varadhan, Probability Theory volume 7 of Courant Lecture Notes in Mathematics, American Mathematical Society, 2001.
- R.M. Dudley, Real Analysis and Probability volume 74 of Cambridge studies in advanced mathematics, Cambridge University Press, 2002.
- Heinz Bauer, Probability Theory and Elements of Measure Theory, 2nd edition, Probability and Mathematical Statistics, Academic Press, 1997.
- Heinz Bauer, Probability Theory, Philosophie Und Wissenschaft (de Gruyter Studies in Mathematics), 1996.
- B. Fristedt and L. Gray, A Modern Approach to Probability Theory, Probability and Its Applications, Birkhauser, 1997.