Μέθοδοι Εφαρμοσμένων Μαθηματικών II (ΕΜ2): Διαφορά μεταξύ των αναθεωρήσεων
Από Wiki Τμήματος Μαθηματικών
Χωρίς σύνοψη επεξεργασίας |
Χωρίς σύνοψη επεξεργασίας |
||
Γραμμή 1: | Γραμμή 1: | ||
* [[Methods of Applied Mathematics ΙI (EM2)|English version]] | * [[Methods of Applied Mathematics ΙI (EM2)|English version]] | ||
{{Course-Graduate-Top-GR}} | {{Course-Graduate-Top-GR}} | ||
{{Menu-OnAllPages-GR}} | |||
=== Γενικά === | === Γενικά === |
Τελευταία αναθεώρηση της 12:09, 15 Ιουνίου 2023
- English version
- Περιγράμματα Μεταπτυχιακών Μαθημάτων
- Τροποποίηση Περιγράμματος (η δυνατότητα αυτή απευθύνεται αποκλειστικά στα μέλη ΔΕΠ του Τμήματος)
- Τμήμα Μαθηματικών
- Αποθήκευση ως PDF ή Εκτύπωση (για αποθήκευση ως PDF, κάντε την σχετική επιλογή στη λίστα εκτυπωτών που θα εμφανιστεί)
Γενικά
Σχολή | Σχολή Θετικών Επιστημών |
---|---|
Τμήμα | Τμήμα Μαθηματικών |
Επίπεδο Σπουδών | Μεταπτυχιακό |
Κωδικός Μαθήματος | EM2 |
Εξάμηνο | 2 |
Τίτλος Μαθήματος | ΜΕΘΟΔΟΙ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΙΙ |
Αυτοτελείς Διδακτικές Δραστηριότητες | Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 7.5) |
Τύπος Μαθήματος | Ειδικού υπόβαθρου |
Προαπαιτούμενα Μαθήματα | |
Γλώσσα Διδασκαλίας και Εξετάσεων | Ελληνική |
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus | Ναι (στην Αγγλική γλώσσα) |
Ηλεκτρονική Σελίδα Μαθήματος (URL) | Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων. |
Μαθησιακά Αποτελέσματα
Μαθησιακά Αποτελέσματα | Το μάθημα είναι μια πρώτη εισαγωγή στις βασικές μεθόδους των εφαρμοσμένων μαθηματικών και ιδιαίτερα στη θεωρία διαταραχών. Υπάρχουν πολλές καταστάσεις στα μαθηματικά όπου βρίσκουμε εκφράσεις που δεν μπορούν να υπολογιστούν με απόλυτη ακρίβεια ή όπου ακριβείς απαντήσεις είναι πολύ περίπλοκες για να παρέχουν χρήσιμες πληροφορίες. Σε πολλές από αυτές τις περιπτώσεις, είναι δυνατόν να βρεθεί μια σχετικά απλή έκφραση η οποία, στην πράξη, είναι εξίσου καλή με την πλήρη και ακριβή λύση. Η ασυμπτωτική ανάλυση ασχολείται με μεθόδους για την εύρεση τέτοιων προσεγγίσεων και έχει ένα ευρύ φάσμα εφαρμογών, τόσο στους τομείς των καθαρών μαθηματικών, όπως τη συνδυαστική, τις πιθανότητες, τη θεωρία αριθμών και τα εφαρμοσμένα μαθηματικά και την επιστήμη των υπολογιστών. Ο στόχος αυτού του μαθήματος είναι η εισαγωγή μερικών από τις βασικές τεχνικές και η εφαρμογή αυτών των μεθόδων σε διάφορα προβλήματα. Μετά την ολοκλήρωση αυτού του μαθήματος οι φοιτητές θα μπορούν:
|
---|---|
Γενικές Ικανότητες |
|
Περιεχόμενο Μαθήματος
Εισαγωγή και συμβολισμός της θεωρίας διαταραχών, κανονικές και ιδιόμορφες διαταραχές, ασυμπτωτικά αναπτύγματα ολοκληρωμάτων, ασυμπτωτικές λύσεις γραμμικών και μη γραμμικών διαφορικών εξισώσεων, μετασχηματισμοί Laplace και Fourier (αν το επιτρέπει ο χρόνος).
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
Τρόπος Παράδοσης | Στην τάξη | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών | Χρήση του εργαστηρίου Μηχανικής | ||||||||||
Οργάνωση Διδασκαλίας |
| ||||||||||
Αξιολόγηση Φοιτητών |
|
Συνιστώμενη Βιβλιογραφία
- Εφαρμοσμένα Μαθηματικά, Logan D.J. Πανεπιστημιακές Εκδόσεις Κρήτης, Ηράκλειο, 1η έκδοση, 2010.
- Perturbation Methods, A.H. Nayfeh, 1η έκδοση, Willey-VCH, 2000.