Μερικές Διαφορικές Εξισώσεις και Εφαρμογές (ΕΜ3): Διαφορά μεταξύ των αναθεωρήσεων
Από Wiki Τμήματος Μαθηματικών
Χωρίς σύνοψη επεξεργασίας |
Χωρίς σύνοψη επεξεργασίας |
||
Γραμμή 1: | Γραμμή 1: | ||
* [[Partial Differential Equations and Applications (EM3)|English version]] | * [[Partial Differential Equations and Applications (EM3)|English version]] | ||
{{Course-Graduate-Top-GR}} | {{Course-Graduate-Top-GR}} | ||
{{Menu-OnAllPages-GR}} | |||
=== Γενικά === | === Γενικά === |
Τελευταία αναθεώρηση της 12:09, 15 Ιουνίου 2023
- English version
- Περιγράμματα Μεταπτυχιακών Μαθημάτων
- Τροποποίηση Περιγράμματος (η δυνατότητα αυτή απευθύνεται αποκλειστικά στα μέλη ΔΕΠ του Τμήματος)
- Τμήμα Μαθηματικών
- Αποθήκευση ως PDF ή Εκτύπωση (για αποθήκευση ως PDF, κάντε την σχετική επιλογή στη λίστα εκτυπωτών που θα εμφανιστεί)
Γενικά
Σχολή | Σχολή Θετικών Επιστημών |
---|---|
Τμήμα | Τμήμα Μαθηματικών |
Επίπεδο Σπουδών | Μεταπτυχιακό |
Κωδικός Μαθήματος | EM3 |
Εξάμηνο | 1 |
Τίτλος Μαθήματος | ΜΕΡΙΚΕΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ |
Αυτοτελείς Διδακτικές Δραστηριότητες | Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 7.5) |
Τύπος Μαθήματος | Ειδικού υπόβαθρου |
Προαπαιτούμενα Μαθήματα | |
Γλώσσα Διδασκαλίας και Εξετάσεων | Ελληνική |
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus | Ναι (στην Αγγλική γλώσσα) |
Ηλεκτρονική Σελίδα Μαθήματος (URL) | Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων. |
Μαθησιακά Αποτελέσματα
Μαθησιακά Αποτελέσματα | Ο φοιτητής σε αυτό το μάθημα θα εφαρμόσει μαθηματικά εργαλεία προηγούμενων μαθημάτων και με τον τρόπο αυτό θα αφομοιώσει καλύτερα ορισμένα φυσικά (και όχι μόνο) φαινόμενα και τον τρόπο που αυτά μετατρέπονται σε μαθηματικά προβλήματα. Πιο συγκεκριμένα με την ολοκλήρωση αυτού του μαθήματος, οι φοιτητές θα πρέπει να είναι ικανοί
|
---|---|
Γενικές Ικανότητες |
|
Περιεχόμενο Μαθήματος
Βασικές έννοιες. Γραμμικές, οιωνοί γραμμικές και ημι-γραμμικές εξισώσεις 1ης τάξης. Το πρόβλημα Cauchy και η επίλυσή του με την μέθοδο των χαρακτηριστικών καμπυλών. Γραμμικές εξισώσεις 2ης τάξης: ταξινόμηση (υπερβολικές, παραβολικές, ελλειπτικές), παραδείγματα (κυματική εξίσωση, εξίσωση θερμότητας, εξίσωση Laplace). Προβλήματα αρχικών και συνοριακών τιμών για την κυματική εξίσωση και την εξίσωση θερμότητας. Προβλήματα συνοριακών τιμών για την εξίσωση Laplace. Το πρόβλημα Cauchy για την κυματική εξίσωση και την εξίσωση θερμότητας.
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
Τρόπος Παράδοσης | Στη τάξη | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών | |||||||||||
Οργάνωση Διδασκαλίας |
| ||||||||||
Αξιολόγηση Φοιτητών |
|
Συνιστώμενη Βιβλιογραφία
- Fluid Mechanics with Applications, M. Xenos and E. Tzirtzilakis, 2018 (in Greek)
- Fluid Mechanics, Volume 1, A. Papaioanou, 2nd Edition, 2001 (in Greek).
- Computational Fluid Mechanics, I. Soulis, 1st Edition, 2008 (in Greek).
- Numerical heat transfer and fluid flow, S.V. Patankar, McGraw-Hill, New York, 1980.
- The Finite Element Method, Vol. 1, The Basis, O.C. Zienkiewicz, R.L. Taylor, 5th Ed., Butterworth-Heinemann, Oxford, 2000.
- Computational Techniques for fluid Dynamics, C.A.J. Fletcher Volumes I and II, 2nd Ed. Springer-Verlag, Berlin, 1991.