Elementary Global Differential Geometry (MAE624): Διαφορά μεταξύ των αναθεωρήσεων
Γραμμή 98: | Γραμμή 98: | ||
=== Attached Bibliography === | === Attached Bibliography === | ||
See [https://service.eudoxus.gr/public/departments#20 Eudoxus]. Additionally: | See the official [https://service.eudoxus.gr/public/departments#20 Eudoxus site] or the [https://cloud.math.uoi.gr/index.php/s/62t8WPCwEXJK7oL local repository] of Eudoxus lists per academic year, which is maintained by the Department of Mathematics. Additionally: | ||
* Barrett O' Neil, Στοιχειώδης Διαφορική Γεωμετρία, Πανεπιστημιακές Εκδόσεις Κρήτης, 2002 | * Barrett O' Neil, Στοιχειώδης Διαφορική Γεωμετρία, Πανεπιστημιακές Εκδόσεις Κρήτης, 2002 | ||
* Manfredo do Carmo, Differential Geometry of Curves and Surfaces, Prentice-Hall, 1976 | * Manfredo do Carmo, Differential Geometry of Curves and Surfaces, Prentice-Hall, 1976 |
Αναθεώρηση της 10:50, 26 Ιουλίου 2022
Undergraduate Courses Outlines - Department of Mathematics
General
School |
School of Science |
---|---|
Academic Unit |
Department of Mathematics |
Level of Studies |
Undergraduate |
Course Code |
MAE624 |
Semester |
6 |
Course Title |
Elementary Global Differential Geometry |
Independent Teaching Activities |
Lectures (Weekly Teaching Hours: 3, Credits: 6) |
Course Type |
Special Background |
Prerequisite Courses | - |
Language of Instruction and Examinations |
Greek |
Is the Course Offered to Erasmus Students |
Yes (in English) |
Course Website (URL) | - |
Learning Outcomes
Learning outcomes |
It is an introductory course on global differential geometry. The aim is to study global geometric properties of regular plane curves and regular surfaces. The study requires tools from Linear Algebra, Calculus of several variables, Topology and elementary differential geometry. On completion of the course the student should be familiar with the interplay between local and global properties of curves and surfaces. |
---|---|
General Competences |
|
Syllabus
Convex curves, Hopf's Umlaufsatz, Four vertex theorem, isoperimetric inequality. Surfaces, vector fields, covariant derivative, parallel transport, geodesic curvature, geodesics, exponential map, surfaces of constant Gaussian curvature, Gauss Bonnet Theorem, Liebmann Theorem.
Teaching and Learning Methods - Evaluation
Delivery |
Direct | ||||||||
---|---|---|---|---|---|---|---|---|---|
Use of Information and Communications Technology | - | ||||||||
Teaching Methods |
| ||||||||
Student Performance Evaluation |
Written final examination |
Attached Bibliography
See the official Eudoxus site or the local repository of Eudoxus lists per academic year, which is maintained by the Department of Mathematics. Additionally:
- Barrett O' Neil, Στοιχειώδης Διαφορική Γεωμετρία, Πανεπιστημιακές Εκδόσεις Κρήτης, 2002
- Manfredo do Carmo, Differential Geometry of Curves and Surfaces, Prentice-Hall, 1976