Algebraic Structures II (MAE724): Διαφορά μεταξύ των αναθεωρήσεων
Γραμμή 119: | Γραμμή 119: | ||
=== Attached Bibliography === | === Attached Bibliography === | ||
See [https://service.eudoxus.gr/public/departments#20 Eudoxus]. Additionally: | See the official [https://service.eudoxus.gr/public/departments#20 Eudoxus site] or the [https://cloud.math.uoi.gr/index.php/s/62t8WPCwEXJK7oL local repository] of Eudoxus lists per academic year, which is maintained by the Department of Mathematics. Additionally: | ||
* M. Holz: "Repetition in Algebra", Greek Edition, Symmetria Publishing Company, (2015). | * M. Holz: "Repetition in Algebra", Greek Edition, Symmetria Publishing Company, (2015). | ||
* Th. Theochari-Apostolidou and C. M. A. Charalambous: "Galois Theory", (Greek), Kallipos Publishing (2015). | * Th. Theochari-Apostolidou and C. M. A. Charalambous: "Galois Theory", (Greek), Kallipos Publishing (2015). |
Αναθεώρηση της 13:06, 26 Ιουλίου 2022
Undergraduate Courses Outlines - Department of Mathematics
General
School |
School of Science |
---|---|
Academic Unit |
Department of Mathematics |
Level of Studies |
Undergraduate |
Course Code |
MAE823 |
Semester |
8 |
Course Title |
Algebraic Structures II |
Independent Teaching Activities |
Lectures (Weekly Teaching Hours: 3, Credits: 6) |
Course Type |
Special Background |
Prerequisite Courses | - |
Language of Instruction and Examinations |
Greek |
Is the Course Offered to Erasmus Students |
Yes |
Course Website (URL) | https://sites.google.com/site/apostolosthomamath/teaching |
Learning Outcomes
Learning outcomes |
The students will acquire with the successful completion of the course
|
---|---|
General Competences |
The course aim is for the student to acquire the ability in analysis and synthesis of knowledge in Field Theory and produces free, creative and inductive thinking. |
Syllabus
- Rings
- Integral Domains, Fields, Homomorphisms and Ideals
- Quotient Rings
- Polynomial Rings over fields
- Prime and Maximal Ideals
- Irreducible Polynomials
- The classical methods of solving polynomial equations
- Splitting fields
- The Galois Group
- Roots of unity
- Solvability by Radicals
- Independence of characters
- Galois extensions
- The Fundamental Theorem of Galois Theory
- Discriminants
- Polynomials of degree less than 4 and Galois Groups
- Ruler and Compass constructions
Teaching and Learning Methods - Evaluation
Delivery |
Classroom (face-to-face) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Use of Information and Communications Technology | - | ||||||||||
Teaching Methods |
| ||||||||||
Student Performance Evaluation |
Final written exam in Greek (in case of Erasmus students in English) which includes resolving application problems. |
Attached Bibliography
See the official Eudoxus site or the local repository of Eudoxus lists per academic year, which is maintained by the Department of Mathematics. Additionally:
- M. Holz: "Repetition in Algebra", Greek Edition, Symmetria Publishing Company, (2015).
- Th. Theochari-Apostolidou and C. M. A. Charalambous: "Galois Theory", (Greek), Kallipos Publishing (2015).