Partial Differential Equations (MAE713): Διαφορά μεταξύ των αναθεωρήσεων

Από Wiki Τμήματος Μαθηματικών
Χωρίς σύνοψη επεξεργασίας
Γραμμή 58: Γραμμή 58:
! Learning outcomes
! Learning outcomes
|
|
The aim of the course is an introduction to Partial Differential Equations. By this course the students become familiar with a broad area of Analysis that has many applications to other sciences. The course highlights the wealth of problems that arise and proposes methods to overcome them. These are presented exemplarily and aim to teach ways of transcending and generalizing known methods and solutions. The students learn to analyze methodically externally given problems, taking into account relevant informations and aims, and to try to apply knowledge from other areas of Pure Mathematics in order to solve these problems. Moreover, the students learn to interpret the obtained mathematical results. On the level of content, the students learn about, mainly linear, Partial Differential Equations of first and second order for functions of two variables with respect to both, their explicit solution and their qualitative behavior, and obtain an elementary overview of further problems.
The course introduces the students to Partial Differential Equations (PDE). The importance of the fact that their solutions are scalar or vector-valued functions of more than one independent variables is stressed and that, in contrast to Ordinary Differential Equations, this has significant consequences, in the sense that for PDEs, next to the analytical properties of the solutions, also the algebraic structure of the equations plays a distinguished role, which implies also geometric properties of the solutions. Also, the connection with and origin from the Natural Sciences and Geometry for many of them is stressed and that this implies not only that the focus mainly on certain types of equations results from the questions posed by other scientific fields but also that the latter dictate to a big extend in a natural way the methods for solving and studying the properties of the various classes of PDEs.  
 
In this way, the course strengthens the ability of the students to examine a problem from several perspectives and to take into account knowledge and results from other scientific areas.  
In particular, the course introduces the students to the main classes of PDEs, highlights the fact that each class relies on its own analysis techniques, that their solutions have properties which are characteristic for the class to which they belong, and that results which are obtained for one class can be used partly also for the analysis of equations of a different class, although under essential restrictions. In this introductory course initially only classical solutions are studied and an emphasis is given on the explicit solving of prototypical equations for each class and on a first study of their characteristic properties.
|-
|-
! General Competences
! General Competences

Αναθεώρηση της 15:44, 15 Ιανουαρίου 2025

General

School

School of Science

Academic Unit

Department of Mathematics

Level of Studies

Undergraduate

Course Code

MAE713

Semester

7

Course Title

Partial Differential Equations

Independent Teaching Activities

Lectures (Weekly Teaching Hours: 3, Credits: 6)

Course Type

Special Background

Prerequisite Courses -
Language of Instruction and Examinations

Greek, English

Is the Course Offered to Erasmus Students

Yes (in English)

Course Website (URL) See eCourse, the Learning Management System maintained by the University of Ioannina.

Learning Outcomes

Learning outcomes

The course introduces the students to Partial Differential Equations (PDE). The importance of the fact that their solutions are scalar or vector-valued functions of more than one independent variables is stressed and that, in contrast to Ordinary Differential Equations, this has significant consequences, in the sense that for PDEs, next to the analytical properties of the solutions, also the algebraic structure of the equations plays a distinguished role, which implies also geometric properties of the solutions. Also, the connection with and origin from the Natural Sciences and Geometry for many of them is stressed and that this implies not only that the focus mainly on certain types of equations results from the questions posed by other scientific fields but also that the latter dictate to a big extend in a natural way the methods for solving and studying the properties of the various classes of PDEs.

In this way, the course strengthens the ability of the students to examine a problem from several perspectives and to take into account knowledge and results from other scientific areas. In particular, the course introduces the students to the main classes of PDEs, highlights the fact that each class relies on its own analysis techniques, that their solutions have properties which are characteristic for the class to which they belong, and that results which are obtained for one class can be used partly also for the analysis of equations of a different class, although under essential restrictions. In this introductory course initially only classical solutions are studied and an emphasis is given on the explicit solving of prototypical equations for each class and on a first study of their characteristic properties.

General Competences
  • Search for, analysis and synthesis of data and information, with the use of the necessary technology
  • Working independently
  • Working in an interdisciplinary environment
  • Production of free, creative and inductive thinking

Syllabus

  • Overview of Partial Differential Equations (PDE) and Systems: classification with respect to their (non-)linearity, description of the arising problems and of the various kinds of solutions (classical and weak, general and with boundary values).

(In the following the focus is given on two independent variables.)

  • First order PDE (linear, semi-linear, quasi-linear): geometric and algebraic observations concerning their qualitative behavior, initial value problems and method of characteristics, discussion of the Burgers equation, shock waves and weak solutions, Rankine-Hugoniot condition.
  • Second order PDE: classification, characteristic directions and characteristic curves, wave equation on the line (homogeneous and inhomogeneous), separation of variables for the Laplace and heat equations, Poisson formula.

(Alternatively: instead of the discussion of the (non-linear) Burgers equation and of weak solutions an introduction to the Fourier transform may be given and the heat equation on the line may be discussed.)

Teaching and Learning Methods - Evaluation

Delivery

Classroom (face-to-face)

Use of Information and Communications Technology

The students may contact the lecturer by e-mail

Teaching Methods
Activity Semester Workload
Lectures (13X3) 39
Working independently 78
Exercises-Homeworks 33
Course total 150
Student Performance Evaluation
  • Written exam (mandatory)
  • Homework (optional)

Attached Bibliography

See the official Eudoxus site or the local repository of Eudoxus lists per academic year, which is maintained by the Department of Mathematics. Books and other resources, not provided by Eudoxus:

  • Δάσιος, Γ., Κυριάκη, Κ., & Βαφέας, Π. (2023). Μερικές Διαφορικές Εξισώσεις [Προπτυχιακό εγχειρίδιο]. Κάλλιπος, Ανοικτές Ακαδημαϊκές Εκδόσεις. http://dx.doi.org/10.57713/kallipos-317
  • L. C. Evans. Partial Differential Equations. Second edition. AMS, 2010.
  • G. B. Folland. Introduction to Partial Differential Equations. Princeton University Press, 1995.