Αριθμητική Γραμμική Άλγεβρα Ι (ΑΑ3): Διαφορά μεταξύ των αναθεωρήσεων
Από Wiki Τμήματος Μαθηματικών
(Νέα σελίδα με 'Περιγράμματα Μεταπτυχιακών Μαθημάτων - [https://math.uoi.gr Τμήμα Μαθηματικών] === Γενικά === {| class="wikitable" |- ! Σχολή | Σχολή Θετικών Επιστημών |- ! Τμήμα | Τμήμα Μαθηματικών |- ! Επίπεδο Σπουδών | Μεταπτυχιακό |- ! Κωδικός Μαθήματος | ΑΑ3Α |- ! Εξάμηνο | 1 |- ! Τίτλος Μαθήματος | Α...') |
Χωρίς σύνοψη επεξεργασίας |
||
| Γραμμή 104: | Γραμμή 104: | ||
<!-- Για να επεξεργαστείτε την βιβλιογραφία, επισκευτείτε την σελίδα --> | <!-- Για να επεξεργαστείτε την βιβλιογραφία, επισκευτείτε την σελίδα --> | ||
<!-- https://wiki.math.uoi.gr/index.php/%CE%A0%CF%81%CF%8C%CF%84%CF%85%CF%80%CE%BF: | <!-- https://wiki.math.uoi.gr/index.php/%CE%A0%CF%81%CF%8C%CF%84%CF%85%CF%80%CE%BF:MAM149-Biblio --> | ||
{{ | {{MAM149-Biblio}} | ||
Αναθεώρηση της 17:50, 26 Αυγούστου 2022
Περιγράμματα Μεταπτυχιακών Μαθημάτων - Τμήμα Μαθηματικών
Γενικά
| Σχολή | Σχολή Θετικών Επιστημών |
|---|---|
| Τμήμα | Τμήμα Μαθηματικών |
| Επίπεδο Σπουδών | Μεταπτυχιακό |
| Κωδικός Μαθήματος | ΑΑ3Α |
| Εξάμηνο | 1 |
| Τίτλος Μαθήματος | ΑΡΙΘΜΗΤΙΚΗ ΓΡΑΜΜΙΚΗ ΆΛΓΕΒΡΑ Ι |
| Αυτοτελείς Διδακτικές Δραστηριότητες | Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 7.5) |
| Τύπος Μαθήματος | Ειδικού υποβάθρου |
| Προαπαιτούμενα Μαθήματα | |
| Γλώσσα Διδασκαλίας και Εξετάσεων | Ελληνική |
| Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus | Ναι (στην Αγγλική γλώσσα) |
| Ηλεκτρονική Σελίδα Μαθήματος (URL) | Δείτε το eCourse, το Σύστημα Διαχείρισης Μάθησης του Πανεπιστημίου Ιωαννίνων. |
Μαθησιακά Αποτελέσματα
| Μαθησιακά Αποτελέσματα | Μετά την επιτυχή ολοκλήρωση του μαθήματος, οι φοιτητές θα είναι σε θέση:
|
|---|---|
| Γενικές Ικανότητες |
|
Περιεχόμενο Μαθήματος
Θεωρία Perron-Frobenius για μη Αρνητικούς Πίνακες: Μη Αναγώγιμοι (Irreducible) πίνακες, Κυκλικοί (cyclic) και Πρωταρχικοί (primitive) πίνακες, Αναγώγιμοι (reducible) πίνακες. Επεκτάσεις της Θεωρίας Perron-Frobenius, M-πίνακες, Εφαρμογές της Θεωρίας Perron-Frobenius. Μέθοδοι Ελαχιστοποίησης για την επίλυση γραμμικών συστημάτων: Μέθοδος Συζυγών Κλίσεων, Θεωρία Σύγκλισης, Ανάλυση Σφαλμάτων, Τεχνικές Προρρύθμισης, Προρρυθμισμένες μέθοδοι Συζυγών Κλίσεων, Εφαρμογές.
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
| Τρόπος Παράδοσης | Στην τάξη | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών | |||||||||||
| Οργάνωση Διδασκαλίας |
| ||||||||||
| Αξιολόγηση Φοιτητών | Γραπτή εξέταση - Προφορική εξέταση |
Συνιστώμενη Βιβλιογραφία
- Αριθμητική Γραμμική Άλγεβρα, Β. Δουγαλής, Δ. Νούτσος, Α. Χατζηδήμος, Τυπογραφείο Πανεπιστημίου Ιωαννίνων.
- Προσωπικές διαφάνειες προβολής.