Γενικά
| Σχολή
|
Σχολή Θετικών Επιστημών
|
| Τμήμα
|
Τμήμα Μαθηματικών
|
| Επίπεδο Σπουδών
|
Μεταπτυχιακό
|
| Κωδικός Μαθήματος
|
ΑΛ4
|
| Εξάμηνο
|
2
|
| Τίτλος Μαθήματος
|
ΑΛΓΕΒΡΙΚΗ ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ
|
| Αυτοτελείς Διδακτικές Δραστηριότητες
|
Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 7.5)
|
| Τύπος Μαθήματος
|
Ειδικού υποβάθρου
|
| Προαπαιτούμενα Μαθήματα
|
|
| Γλώσσα Διδασκαλίας και Εξετάσεων
|
Ελληνική
|
| Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus
|
Ναι (στην Αγγλική γλώσσα)
|
| Ηλεκτρονική Σελίδα Μαθήματος (URL)
|
Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων.
|
Μαθησιακά Αποτελέσματα
| Μαθησιακά Αποτελέσματα
|
Οι στόχοι του μαθήματος είναι η απόκτηση του θεωρητικού υποβάθρου από τον μεταπτυχιακό φοιτητή σε θέματα που αφορούν την προχωρημένη Αλγεβρική Θεωρία Αριθμών.
|
| Γενικές Ικανότητες
|
Το μάθημα αποσκοπεί στο να μπορεί ο μεταπτυχιακός φοιτητής αν αποκτήσει την ικανότητα στην ανάλυση και σύνθεση προχωρημένων γνώσεων αλγεβρικής θεωρίας αριθμών.
|
Περιεχόμενο Μαθήματος
Περιοχές Dedekind, Νόρμες, διακρίνουσα, πεπερασμένο του αριθμού κλάσης, θεώρημα μονάδων του Dirichlet, τετραγωνικές και κυκλοτομικές επεκτάσεις, τετραγωνική αντιστροφή, πληρώσεις και τοπικά σώματα.
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
| Τρόπος Παράδοσης
|
Πρόσωπο με πρόσωπο
|
| Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών
|
|
| Οργάνωση Διδασκαλίας
|
| Δραστηριότητα
|
Φόρτος Εργασίας Εξαμήνου
|
| Διαλέξεις
|
39 ώρες
|
| Μελέτη της θεωρίας
|
78 ώρες
|
| Επίλυση ασκήσεων-Εργασίες
|
70.5 ώρες
|
| Σύνολο Μαθήματος
|
187.5
|
|
| Αξιολόγηση Φοιτητών
|
Γραπτή εξέταση στο τέλος του εξαμήνου (υποχρεωτική), εργασίες ή/και ενδιάμεση εξέταση (προαιρετική).
|
Συνιστώμενη Βιβλιογραφία
- Milne, James S., Algebraic Number Theory (v3.07), (2017). Available at www.jmilne.org/math/.
- Jarvis Frazer, Algebraic Number Theory, Springer, 2014.