Αριθμητική Γραμμική Άλγεβρα (ΜΑΕ685)

Από Wiki Τμήματος Μαθηματικών
Αναθεώρηση ως προς 11:43, 28 Αυγούστου 2022 από τον Mathwikiadmin (συζήτηση | συνεισφορές) (Νέα σελίδα με 'Περιγράμματα Προπτυχιακών Μαθημάτων - [https://math.uoi.gr Τμήμα Μαθηματικών] === Γενικά === {| class="wikitable" |- ! Σχολή | Σχολή Θετικών Επιστημών |- ! Τμήμα | Τμήμα Μαθηματικών |- ! Επίπεδο Σπουδών | Προπτυχιακό |- ! Κωδικός Μαθήματος | MAE545 |- ! Εξάμηνο | 5 |- ! Τίτλος Μαθήματος | ΑΡΙ...')
(διαφορά) ← Παλαιότερη αναθεώρηση | Τελευταία αναθεώρηση (διαφορά) | Νεότερη αναθεώρηση → (διαφορά)

Περιγράμματα Προπτυχιακών Μαθημάτων - Τμήμα Μαθηματικών

Γενικά

Σχολή Σχολή Θετικών Επιστημών
Τμήμα Τμήμα Μαθηματικών
Επίπεδο Σπουδών Προπτυχιακό
Κωδικός Μαθήματος MAE545
Εξάμηνο 5
Τίτλος Μαθήματος ΑΡΙΘΜΗΤΙΚΗ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ
Αυτοτελείς Διδακτικές Δραστηριότητες Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 6)
Τύπος Μαθήματος Ειδικού Υποβάθρου
Προαπαιτούμενα Μαθήματα
Γλώσσα Διδασκαλίας και Εξετάσεων Ελληνική
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus Ναι (στην Αγγλική γλώσσα)
Ηλεκτρονική Σελίδα Μαθήματος (URL) Δείτε το eCourse, το Σύστημα Διαχείρισης Μάθησης του Πανεπιστημίου Ιωαννίνων.

Μαθησιακά Αποτελέσματα

Μαθησιακά Αποτελέσματα Μετά την επιτυχή ολοκλήρωση του μαθήματος, οι φοιτητές θα είναι σε θέση:
  • να κατανοήσουν τη βασική θεωρία πινάκων
  • να γνωρίζουν τις διδασκόμενες μεθόδους για τη λύσει γραμμικών συστημάτων
  • να γνωρίζουν τις διδασκόμενες μεθόδους για την εύρεση ιδιοτιμών και ιδιοδιανυσμάτων
  • να επιλέγουν την κατάλληλη μέθοδο λαβαίνοντας υπόψη την ευστάθεια και την ταχύτητα του αλγορίθμου, καθώς και την κατάσταση του συστήματος
  • να υλοποιούν τις παραπάνω μεθόδους με προγράμματα στον υπολογιστή.
Γενικές Ικανότητες
  • Αναζήτηση, ανάλυση και σύνθεση δεδομένων και πληροφοριών, με τη χρήση και των απαραίτητων τεχνολογιών
  • Προσαρμογή σε νέες καταστάσεις
  • Άσκηση κριτικής και αυτοκριτικής
  • Προαγωγή της ελεύθερης, δημιουργικής και επαγωγικής σκέψης.

Περιεχόμενο Μαθήματος

Στοιχεία από τη θεωρία Πινάκων. Κατάσταση Γραμμικών Συστημάτων, Ευστάθεια μεθόδων. Άμεσες Μέθοδοι: Μέθοδος Απαλοιφής Gauss, LU Ανάλυση, Ανάλυση Cholesky. Επαναληπτικές μέθοδοι: Μέθοδος Jacobi, μέθοδος Gauss-Seidel, τεχνική Παρεκβολής, μέθοδος SOR. Μέθοδοι ελαχιστοποίησης για την επίλυση γραμμικών συστημάτων: Μέθοδος Απότομης Καθόδου, μέθοδος Συζυγών Κλίσεων. Το γραμμικό πρόβλημα ελαχίστων τετραγώνων: Σύστημα των Κανονικών Εξισώσεων, μέθοδος QR. Αριθμητική εύρεση Ιδιοτιμών και Ιδιοδιανυσμάτων: Μέθοδος Δυνάμεων, μέθοδος αντίστροφων Δυνάμεων, μέθοδος QR.

Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση

Τρόπος Παράδοσης Στην τάξη
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών
Οργάνωση Διδασκαλίας
Δραστηριότητα Φόρτος Εργασίας Εξαμήνου
Διαλέξεις (13Χ3) 39
Αυτοτελής Μελέτη 78
Επίλυση Ασκήσεων - εργασίες 33
Σύνολο Μαθήματος 150
Αξιολόγηση Φοιτητών Γραπτή εξέταση

Συνιστώμενη Βιβλιογραφία

Δείτε την υπηρεσία Εύδοξος ή το τοπικό αποθετήριο του Τμήματος Μαθηματικών για τα παρεχόμενα συγγράμματα ανά ακαδημαϊκό έτος. Συγγράμματα και άλλες πηγές εκτός της υπηρεσίας Εύδοξος:

Πρότυπο:MAE545-Biblio