Γενικά
Σχολή
|
Σχολή Θετικών Επιστημών
|
Τμήμα
|
Τμήμα Μαθηματικών
|
Επίπεδο Σπουδών
|
Μεταπτυχιακό
|
Κωδικός Μαθήματος
|
ΑΑ3
|
Εξάμηνο
|
1
|
Τίτλος Μαθήματος
|
ΑΡΙΘΜΗΤΙΚΗ ΓΡΑΜΜΙΚΗ ΆΛΓΕΒΡΑ Ι
|
Αυτοτελείς Διδακτικές Δραστηριότητες
|
Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 7.5)
|
Τύπος Μαθήματος
|
Ειδικού υποβάθρου
|
Προαπαιτούμενα Μαθήματα
|
|
Γλώσσα Διδασκαλίας και Εξετάσεων
|
Ελληνική
|
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus
|
Ναι (στην Αγγλική γλώσσα)
|
Ηλεκτρονική Σελίδα Μαθήματος (URL)
|
Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων.
|
Μαθησιακά Αποτελέσματα
Μαθησιακά Αποτελέσματα
|
Μετά την επιτυχή ολοκλήρωση του μαθήματος, οι φοιτητές θα είναι σε θέση:
- να κατανοήσουν τη θεωρία Perron-Frobenius,
- να διακρίνουν τις διαφορές της θεωρίας αυτής στις διάφορες κλάσεις πινάκων (μη αναγώγιμους, κυκλικούς, πρωταρχικούς και αναγώγιμους),
- να γνωρίζουν τη χρησιμότητα της θεωρίας Perron-Frobenius μέσα από τις εφαρμογές,
- να κατανοήσουν τη θεωρία των μεθόδων Υποχώρων Krylov,
- να κατανοήσουν την ανάλυση σφαλμάτων,
- να κατανοήσουν τις τεχνικές προρρύθμισης και την αναγκαιότητα για προρρύθμιση,
- να υλοποιούν τις παραπάνω μεθόδους με προγράμματα στον υπολογιστή.
|
Γενικές Ικανότητες
|
- Αναζήτηση, ανάλυση και σύνθεση δεδομένων και πληροφοριών, με τη χρήση και των απαραίτητων τεχνολογιών
- Προσαρμογή σε νέες καταστάσεις
- Άσκηση κριτικής και αυτοκριτικής
- Προαγωγή της ελεύθερης, δημιουργικής και επαγωγικής σκέψης.
|
Περιεχόμενο Μαθήματος
Θεωρία Perron-Frobenius για μη Αρνητικούς Πίνακες: Μη Αναγώγιμοι (Irreducible) πίνακες, Κυκλικοί (cyclic) και Πρωταρχικοί (primitive) πίνακες, Αναγώγιμοι (reducible) πίνακες. Επεκτάσεις της Θεωρίας Perron-Frobenius, M-πίνακες, Εφαρμογές της Θεωρίας Perron-Frobenius. Μέθοδοι Ελαχιστοποίησης για την επίλυση γραμμικών συστημάτων: Μέθοδος Συζυγών Κλίσεων, Θεωρία Σύγκλισης, Ανάλυση Σφαλμάτων, Τεχνικές Προρρύθμισης, Προρρυθμισμένες μέθοδοι Συζυγών Κλίσεων, Εφαρμογές.
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
Τρόπος Παράδοσης
|
Στην τάξη
|
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών
|
|
Οργάνωση Διδασκαλίας
|
Δραστηριότητα
|
Φόρτος Εργασίας Εξαμήνου
|
Διαλέξεις
|
39
|
Αυτοτελής Μελέτη
|
78
|
Επίλυση Ασκήσεων - Εργασίες
|
70.5
|
Σύνολο Μαθήματος
|
187.5
|
|
Αξιολόγηση Φοιτητών
|
Γραπτή εξέταση - Προφορική εξέταση
|
Συνιστώμενη Βιβλιογραφία
- Αριθμητική Γραμμική Άλγεβρα, Β. Δουγαλής, Δ. Νούτσος, Α. Χατζηδήμος, Τυπογραφείο Πανεπιστημίου Ιωαννίνων.
- Προσωπικές διαφάνειες προβολής.