Linear Programming (MAE631K)

Από Wiki Τμήματος Μαθηματικών

Undergraduate Courses Outlines - Department of Mathematics

General

School

School of Science

Academic Unit

Department of Mathematics

Level of Studies

Undergraduate

Course Code

ΜΑΕ631

Semester

6

Course Title

Linear Programming

Independent Teaching Activities

Lectures (Weekly Teaching Hours: 3, Credits: 6)

Course Type

Special Background

Prerequisite Courses -
Language of Instruction and Examinations

Greek

Is the Course Offered to Erasmus Students

Yes

Course Website (URL) -

Learning Outcomes

Learning outcomes

The course learning outcomes are: the introduction of the students to linear programming formulation, the comprehension of the mathematical properties of linear programming problems, the understanding of the theory underlying the simplex algorithm, the understanding of the dual theory and its interpretation, the use of LINDO software package to solve linear programming problems. Upon successful completion of the course the student will be able to:

  • to model linear programming problems.
  • to solve linear programming problems with the Simplex method.
  • to apply the appropriate modifications of Simplex method when it is necessary.
  • to validate and interpret the results obtained when linear programming problems are solved using LINDO software.
General Competences
  • Working independently
  • Decision-making
  • Adapting to new situations
  • Production of free, creative and inductive thinking
  • Synthesis of data and information, with the use of the necessary technology.

Syllabus

  • Linear programming problems formulation
  • Graphical solution
  • The Simplex Method 
  • The Big M method
  • The Two-Phase Simplex Method
  • Dual theory
  • Sensitivity analysis
  • Transportation problem
  • Assignment problem

Teaching and Learning Methods - Evaluation

Delivery

Face-to-face

Use of Information and Communications Technology

Lindo Software, Email, class web

Teaching Methods
Activity Semester Workload
Lectures 39
Independent study 78
Fieldwork (3-4 set of homework) 33
Course total 150
Student Performance Evaluation

LANGUAGE OF EVALUATION: Greek
METHODS OF EVALUATION: Final exam (100%)

Attached Bibliography

See the official Eudoxus site or the local repository of Eudoxus lists per academic year, which is maintained by the Department of Mathematics. Additionally:

  • ΛΟΥΚΑΚΗΣ Μ. Επιχειρησιακή έρευνα γραμμικός προγραμματισμός, Εκδοτικό Κέντρο Βορείου Ελλάδας, 1994.
  • ΟΙΚΟΝΟΜΟΥ Γ. και ΓΕΩΡΓΙΟΥ Α., ΠΟΣΟΤΙΚΗ ΑΝΑΛΥΣΗ ΓΙΑ ΤΗ ΛΗΨΗ ΔΙΟΙΚΗΤΙΚΩΝ ΑΠΟΦΑΣΕΩΝ, Τόμοι Α και Β, Εκδόσεις Μπένου, Αθήνα 2000.
  • ΟΙΚΟΝΟΜΟΥ Γ. και ΤΣΟΤΡΑ Γ . ΠΟΣΟΤΙΚΗ ΑΝΑΛΥΣΗ ΠΕΡΙΠΤΩΣΕΩΝ, Εκδόσεις Μπένου, Αθήνα 1996
  • ΠΑΠΑΡΡΙΖΟΣ Κ., Γραμμικός Προγραμματισμός. Εκδόσεις Ζυγός, Θεσσαλονίκη 1999
  • ΣΙΣΚΟΣ Γ., Γραμμικός Προγραμματισμός, Εκδόσεις Νέων Τεχνολογιών, Αθήνα 1998.
  • HAMDY TAHA, Επιχειρησιακή Έρευνα Εκδόσεις Α. Τζιολα & ΥΙΟΙ Α.Ε., 2011
  • HILLIER F. S. and G. J. Lieberman Introduction Operations research. The McGraw-Hill Companies, 2001
  • WINSTON W. L., Operations research (Applications and algorithms). Duxbury Press (International Thomson Publishing) 1994.
  • HADLEY G. Linear Programming, Addison-Wesley Publishing Company, INC, 1965
  • BERTSIMAS D. and J. N. TSITSIKLIS Introduction to Linear Optimization, Athena Scientific 1997
  • GASS S. Linear Programming Methods and Applications, McGraw-Hill 1985
  • Journal: Mathematical Programming Journal, Series A and Series B
  • Journal: INFORMS Transactions on Education (ITE)