Μαθηματικός Προγραμματισμός (ΣEE3)
Από Wiki Τμήματος Μαθηματικών
Αναθεώρηση ως προς 08:51, 25 Αυγούστου 2022 από τον Mathwikiadmin (συζήτηση | συνεισφορές) (Νέα σελίδα με 'Περιγράμματα Μεταπτυχιακών Μαθημάτων - [https://math.uoi.gr Τμήμα Μαθηματικών] === Γενικά === {| class="wikitable" |- ! Σχολή | Σχολή Θετικών Επιστημών |- ! Τμήμα | Τμήμα Μαθηματικών |- ! Επίπεδο Σπουδών | Μεταπτυχιακό |- ! Κωδικός Μαθήματος | ΣEE3 |- ! Εξάμηνο | 1 |- ! Τίτλος Μαθήματος | Μ...')
Περιγράμματα Μεταπτυχιακών Μαθημάτων - Τμήμα Μαθηματικών
Γενικά
| Σχολή | Σχολή Θετικών Επιστημών |
|---|---|
| Τμήμα | Τμήμα Μαθηματικών |
| Επίπεδο Σπουδών | Μεταπτυχιακό |
| Κωδικός Μαθήματος | ΣEE3 |
| Εξάμηνο | 1 |
| Τίτλος Μαθήματος | ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ |
| Αυτοτελείς Διδακτικές Δραστηριότητες | Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 6) |
| Τύπος Μαθήματος | Ειδικότητας |
| Προαπαιτούμενα Μαθήματα | |
| Γλώσσα Διδασκαλίας και Εξετάσεων | Ελληνική |
| Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus | Ναι (στην Αγγλική γλώσσα) |
| Ηλεκτρονική Σελίδα Μαθήματος (URL) | Δείτε το eCourse, το Σύστημα Διαχείρισης Μάθησης του Πανεπιστημίου Ιωαννίνων. |
Μαθησιακά Αποτελέσματα
| Μαθησιακά Αποτελέσματα | Στόχοι του μαθήματος είναι: η εισαγωγή των φοιτητών στο μαθηματικό προγραμματισμό με έμφαση στις τεχνικές επίλυσης ντετερμινιστικών μοντέλων και στην ανάλυση της υποκείμενης μαθηματικής δομής αυτών των μοντέλων. Με την επιτυχή ολοκλήρωση του μαθήματος ο φοιτητής /τρια θα είναι σε θέση να:
|
|---|---|
| Γενικές Ικανότητες |
|
Περιεχόμενο Μαθήματος
Μοντελοποίηση προβλημάτων γραμμικού προγραμματισμού. Ο αλγόριθμος Simplex. Μέθοδος του μεγάλου Μ. Μέθοδος δύο φάσεων. Αναθεωρημένη μέθοδος Simplex. Δυική θεωρία. Δυικός αλγόριθμος Simplex. Ανάλυση ευαισθησίας. Παραμετρική ανάλυση. Τα προβλήματα μεταφοράς, μεταφόρτωσης και εκχώρησης. Δυναμικός προγραμματισμός: Η αρχή βελτιστοποίησης του Bellman. Μαθηματικά μοντέλα διακριτού δυναμικού τύπου με βέβαιο μέλλον. Εφαρμογές του δυναμικού προγραμματισμού. Θέματα διαχείρισης αποθεμάτων.
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
| Τρόπος Παράδοσης | Στην τάξη | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών |
| ||||||||||
| Οργάνωση Διδασκαλίας |
| ||||||||||
| Αξιολόγηση Φοιτητών |
|
Συνιστώμενη Βιβλιογραφία
- Καρακώστας, Κ. (2002). Γραμμικά Μοντέλα: Παλινδρόμηση και Ανάλυση Διακύμανσης. Πανεπιστήμιο Ιωαννίνων.
- Λουκάς, Σ. (2014). Γενικό Γραμμικό Μοντέλο. Πανεπιστήμιο Ιωαννίνων.
- Οικονόμου, Π. και Καρώνη, Χ. (2010). Στατιστικά Μοντέλα Παλινδρόμησης, Εκδόσεις Συμεών.
- Draper, N.R. and H. Smith, (1998). Applied Regression Analysis, Third Edition, Wiley,
- Searle, S.R., (1997). Linear Models, Wiley Classics Library, Wiley,
- Seber, G.A.F. and A.J. Lee, (2003). Linear Regression Analysis, 2nd Edition, Wiley.