Linear Algebra I (MAY121)
Από Wiki Τμήματος Μαθηματικών
Αναθεώρηση ως προς 12:26, 13 Αυγούστου 2022 από τον Mathwikiadmin (συζήτηση | συνεισφορές) (→General)
Undergraduate Courses Outlines - Department of Mathematics
General
| School | School of Science |
|---|---|
| Academic Unit | Department of Mathematics |
| Level of Studies | Undergraduate |
| Course Code | MAY121 |
| Semester | 1 |
| Course Title | Linear Algebra I |
| Independent Teaching Activities | Lectures (Weekly Teaching Hours: 5, Credits: 7.5) |
| Course Type | General Background |
| Prerequisite Courses | - |
| Language of Instruction and Examinations | Greek |
| Is the Course Offered to Erasmus Students | Yes (in English) |
| Course Website (URL) | See eCourse, the Learning Management System maintained by the University of Ioannina. |
Learning Outcomes
| Learning outcomes |
After finishing the course, the students will be able:
|
|---|---|
| General Competences | The aim of the course is to empower the graduate to analyse and compose basic notions and knowledge of Linear Algebra and advance his creative and productive thinking. |
Syllabus
- The algebra of (m x n) matrices and applications.
- Row echelon forms and reduced row echelon form of a matrix.
- Rank of a matrix. Determinants. Invertible matrices.
- Linear systems and applications.
- Vector spaces. Linear maps.
- The space L(E,F) of linear operations.
- Subspaces. Bases. Dimension. Rank of a linear operation.
- Fundamental equation of dimension and its applications. Matrix of a linear map. Matrix of a change of bases. The isomorphism between linear mapsand matrices. Equivalent matrices. Similar matrices. Determinant of an endomorphism. Sum and direct sum of vector subspaces.
Teaching and Learning Methods - Evaluation
| Delivery | Classroom (face-to-face) | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Use of Information and Communications Technology |
| ||||||||||
| Teaching Methods |
| ||||||||||
| Student Performance Evaluation | Final written exam in Greek (in case of Erasmus students, in English) which includes analysis of theoretical topics and resolving application problems. |
Attached Bibliography
See the official Eudoxus site or the local repository of Eudoxus lists per academic year, which is maintained by the Department of Mathematics. Additionally:
- Introduction to Linear Algebra (Greek), Bozapalidis Symeon, ISBN: 978-960-99293-5-6 (Editor): Charalambos Nik. Aivazis