Διαφορίσιμα Πολυπτύγματα (ΜΑΕ728)

Από Wiki Τμήματος Μαθηματικών
Αναθεώρηση ως προς 13:48, 28 Αυγούστου 2022 από τον Mathwikiadmin (συζήτηση | συνεισφορές) (Νέα σελίδα με 'Περιγράμματα Προπτυχιακών Μαθημάτων - [https://math.uoi.gr Τμήμα Μαθηματικών] === Γενικά === {| class="wikitable" |- ! Σχολή | Σχολή Θετικών Επιστημών |- ! Τμήμα | Τμήμα Μαθηματικών |- ! Επίπεδο Σπουδών | Προπτυχιακό |- ! Κωδικός Μαθήματος | MAE728 |- ! Εξάμηνο | 7 |- ! Τίτλος Μαθήματος | ΔΙΑ...')
(διαφορά) ← Παλαιότερη αναθεώρηση | Τελευταία αναθεώρηση (διαφορά) | Νεότερη αναθεώρηση → (διαφορά)

Περιγράμματα Προπτυχιακών Μαθημάτων - Τμήμα Μαθηματικών

Γενικά

Σχολή Σχολή Θετικών Επιστημών
Τμήμα Τμήμα Μαθηματικών
Επίπεδο Σπουδών Προπτυχιακό
Κωδικός Μαθήματος MAE728
Εξάμηνο 7
Τίτλος Μαθήματος ΔΙΑΦΟΡΙΣΙΜΑ ΠΟΛΥΠΤΥΓΜΑΤΑ
Αυτοτελείς Διδακτικές Δραστηριότητες Διαλέξεις και ασκήσεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 6)
Τύπος Μαθήματος Ειδικού Υποβάθρου
Προαπαιτούμενα Μαθήματα
Γλώσσα Διδασκαλίας και Εξετάσεων Ελληνική
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus Ναι (στην Αγγλική γλώσσα)
Ηλεκτρονική Σελίδα Μαθήματος (URL) Δείτε το eCourse, το Σύστημα Διαχείρισης Μάθησης του Πανεπιστημίου Ιωαννίνων.

Μαθησιακά Αποτελέσματα

Μαθησιακά Αποτελέσματα Ο βασικός σκοπός του μαθήματος είναι η εισαγωγή στις θεμελιώδεις έννοιες και στα εργαλεία της θεωρίας των διαφορίσιμων πολυπτυγμάτων. Το μάθημα αυτό αποτελεί βασική προϋπόθεση για την εισαγωγή στη Γεωμετρία Riemann. Μετά από μια επισκόπιση βασικών εννοιών από Διαφορικό Λογισμό Πολλών Μεταβλητών, εισάγαγονται τα διαφορίσιμα πολύπτυγμα, ο εφαπτόμενος χώρος ενός πολυπτύγματος, η εφαπτόμενη δέσμη, εμβαπτίσεις, εμφυτεύσεις, γραμμικές συνοχές, γεωδαισιακές καμπύλες, παράλληλη μεταφορά ενός διανύσματος και μετρικές Riemann. Στο τέλος του μαθήματος περιμένουμε από τον φοιτητή να έχει κατανοήσει τις έννοιες, τους ορισμούς και τα κύρια θεωρήματα τα οποία αναλύονται στο μάθημα.
Γενικές Ικανότητες

Το μάθημα αποσκοπεί στο να μπορεί ο φοιτητής να αποκτήσει ικανότητα στην ανάλυση και σύνθεση βασικών γνώσεων στη σύγχρονη Διαφορική Γεωμετρία.

Περιεχόμενο Μαθήματος

  • Διαφορίσιμα πολυπτύγματα.
  • Διαφορίσιμες απεικονίσεις.
  • Εφαπτόμενα διανύσματα.
  • Διανυσματικά πεδία.
  • Κανονικές τιμές και το θεώρημα Sard.
  • Ομοτοπία και ισοτοπία.
  • Βαθμός Brower μιας απεικόνισης.
  • Γινόμενο Lie.
  • Το Θεώρημα του Frobenius
  • Το Θεώρημα του Whitney.
  • Συνοχές και παράλληλη μεταφορά.
  • Μετρικές Riemann.

Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση

Τρόπος Παράδοσης Πρόσωπο με πρόσωπο.
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών
Οργάνωση Διδασκαλίας
Δραστηριότητα Φόρτος Εργασίας Εξαμήνου
Διαλέξεις (13Χ3) 39
Αυτοτελής Μελέτη 111
Σύνολο Μαθήματος 150
Αξιολόγηση Φοιτητών Εβδομαδιαίες εργασίες, παρουσιάσεις, γραπτές εξετάσεις στο τέλος των μαθημάτων με ερωτήσεις και θέματα ανάπτυξης και επίλυσης προβλημάτων.

Συνιστώμενη Βιβλιογραφία

Δείτε την υπηρεσία Εύδοξος ή το τοπικό αποθετήριο του Τμήματος Μαθηματικών για τα παρεχόμενα συγγράμματα ανά ακαδημαϊκό έτος. Συγγράμματα και άλλες πηγές εκτός της υπηρεσίας Εύδοξος:

  • M. do Carmo, Riemannian Geometry, Birkhaüser Boston, Inc., Boston, MA, 1992.
  • V. Guillemin & A. Pollack, Differentiable Topology, Prentice-Hall, Inc, Englewood Cliffs, 1974.
  • J. Lee, Introduction to Smooth Manifolds, Graduate Texts in Mathematics, 218, 2013.
  • J. Milnor, Topology From the Differentiable Viewpoint, Princeton University Press, NJ, 1997.
  • L. Tu, An Introduction to Manifolds, Universitext. Springer, New York, 2011.
  • Δ. Κουτρουφιώτης, Διαφορική Γεωμετρία, Πανεπιστήμιο Ιωαννίνων, 1994.