Στατιστική και Μοντελοποίηση κατά Bayes (MAE731A)
Από Wiki Τμήματος Μαθηματικών
Αναθεώρηση ως προς 13:48, 28 Αυγούστου 2022 από τον Mathwikiadmin (συζήτηση | συνεισφορές) (Νέα σελίδα με 'Περιγράμματα Προπτυχιακών Μαθημάτων - [https://math.uoi.gr Τμήμα Μαθηματικών] === Γενικά === {| class="wikitable" |- ! Σχολή | Σχολή Θετικών Επιστημών |- ! Τμήμα | Τμήμα Μαθηματικών |- ! Επίπεδο Σπουδών | Προπτυχιακό |- ! Κωδικός Μαθήματος | MAE731A |- ! Εξάμηνο | 7 |- ! Τίτλος Μαθήματος | ΘΕΩ...')
Περιγράμματα Προπτυχιακών Μαθημάτων - Τμήμα Μαθηματικών
Γενικά
Σχολή | Σχολή Θετικών Επιστημών |
---|---|
Τμήμα | Τμήμα Μαθηματικών |
Επίπεδο Σπουδών | Προπτυχιακό |
Κωδικός Μαθήματος | MAE731A |
Εξάμηνο | 7 |
Τίτλος Μαθήματος | ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ-BAYES |
Αυτοτελείς Διδακτικές Δραστηριότητες | Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 6) |
Τύπος Μαθήματος | Ειδικού Υποβάθρου |
Προαπαιτούμενα Μαθήματα | |
Γλώσσα Διδασκαλίας και Εξετάσεων | Ελληνική |
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus | Ναι (στην Αγγλική γλώσσα) |
Ηλεκτρονική Σελίδα Μαθήματος (URL) | Δείτε το eCourse, το Σύστημα Διαχείρισης Μάθησης του Πανεπιστημίου Ιωαννίνων. |
Μαθησιακά Αποτελέσματα
Μαθησιακά Αποτελέσματα | Το μάθημα αυτό αποτελείται από δύο ενότητες: την Θεωρία Αποφάσεων και την Θεωρία κατά Bayes. Η Θεωρία Αποφάσεων όπως δηλώνει και ο τίτλος της ασχολείται με το πρόβλημα της λήψης αποφάσεων. Αντικείμενο της Στατιστικής Θεωρίας Αποφάσεων είναι η λήψη αποφάσεων για άγνωστες αριθμητικές ποσότητες (παράμετροι) αξιοποιώντας την παρουσία της στατιστικής γνώσης. Ο στόχος του μαθήματος ως προς αυτήν την ενότητα είναι η ανάπτυξη της ικανότητας αξιολόγησης εκτιμητριών ως προς τις ιδιότητες αμεροληψίας, ελάχιστου μέσου τετραγωνικού ή απόλυτου σφάλματος, επάρκειας, πληρότητας, συνέπειας κ.οκ. Ο στόχος του μαθήματος ως προς τη δεύτερη ενότητα είναι να παρέχει μια εισαγωγή στη Μπεϋζιανή προσέγγιση της στατιστικής, με αφετηρία την κατανόηση των βασικών αρχών της και κατάληξη τη διεξαγωγή στατιστικής συμπερασματολογίας κατά Bayes (εκτίμηση με σημείο και με διάστημα-έλεγχος υποθέσεων). Ειδικότερα, στόχος είναι η κατανόηση της έννοιας και των βασικών αρχών εκτίμησης άγνωστων παραμέτρων πληθυσμών, με σημείο και με διάστημα, με την κλασική και κατά Bayes προσέγγιση. Με την ολοκλήρωση του μαθήματος ο φοιτητής θα είναι σε θέση να α) συγκρίνει την κατά Βayes με την κλασική προσέγγιση, β) να αξιολογεί με θεμελιωμένα κριτήρια την «απόδοση» των διάφορων εκτιμητών-αποφάσεων. |
---|---|
Γενικές Ικανότητες |
|
Περιεχόμενο Μαθήματος
Γενικά Στοιχεία Θεωρίας Αποφάσεων (συνάρτηση αποφάσεως, απώλειας, κινδύνου), Παραδεκτός Εκτιμητής, Ελαχιστομέγιστος Εκτιμητής. Στοιχεία από τη Θεωρία Bayes, Εκτιμητής Bayes, διάστημα Bayes, Στατιστικά τεστ minimax & Bayes.
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
Τρόπος Παράδοσης | Στην τάξη (πρόσωπο με πρόσωπο) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών | Χρήση Τ.Π.Ε. στην επικοινωνία με τους φοιτητές | ||||||||||
Οργάνωση Διδασκαλίας |
| ||||||||||
Αξιολόγηση Φοιτητών | Γραπτή τελική εξέταση στα Ελληνικά (σε περίπτωση φοιτητών Erasmus στην Αγγλική γλώσσα) η οποία περιλαμβάνει επίλυση προβλημάτων εφαρμογής των γνώσεων που αποκτήθηκαν και συγκριτική αξιολόγηση στοιχείων θεωρίας. |
Συνιστώμενη Βιβλιογραφία
Δείτε την υπηρεσία Εύδοξος ή το τοπικό αποθετήριο του Τμήματος Μαθηματικών για τα παρεχόμενα συγγράμματα ανά ακαδημαϊκό έτος. Συγγράμματα και άλλες πηγές εκτός της υπηρεσίας Εύδοξος:
- Berger, J.O. (1985) Statistical decision theory and Bayesian analysis. Springer.
- Bernardo J. M. & Smith A. F. M., (1994). Bayesian Theory, Wiley, London.
- Congdon, P. (2007), Bayesian Statistical Modelling, Willey.
- Κ. Φερεντίνος (2005). Εκθετική οικογένεια κατανομών Θεωρία Bayes, Πανεπιστημιακές Παραδόσεις.