Αλγεβρική Θεωρία Αριθμών (ΑΛ4)
Από Wiki Τμήματος Μαθηματικών
Αναθεώρηση ως προς 22:58, 29 Σεπτεμβρίου 2022 από τον Mathwikiadmin (συζήτηση | συνεισφορές) (→Γενικά)
Περιγράμματα Μεταπτυχιακών Μαθημάτων - Τμήμα Μαθηματικών
Γενικά
Σχολή | Σχολή Θετικών Επιστημών |
---|---|
Τμήμα | Τμήμα Μαθηματικών |
Επίπεδο Σπουδών | Μεταπτυχιακό |
Κωδικός Μαθήματος | ΑΛ4 |
Εξάμηνο | 2 |
Τίτλος Μαθήματος | ΑΛΓΕΒΡΙΚΗ ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ |
Αυτοτελείς Διδακτικές Δραστηριότητες | Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 7.5) |
Τύπος Μαθήματος | Ειδικού υποβάθρου |
Προαπαιτούμενα Μαθήματα | |
Γλώσσα Διδασκαλίας και Εξετάσεων | Ελληνική |
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus | Ναι (στην Αγγλική γλώσσα) |
Ηλεκτρονική Σελίδα Μαθήματος (URL) | Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων. |
Μαθησιακά Αποτελέσματα
Μαθησιακά Αποτελέσματα | Οι στόχοι του μαθήματος είναι η απόκτηση του θεωρητικού υποβάθρου από τον μεταπτυχιακό φοιτητή σε θέματα που αφορούν την προχωρημένη Αλγεβρική Θεωρία Αριθμών. |
---|---|
Γενικές Ικανότητες | Το μάθημα αποσκοπεί στο να μπορεί ο μεταπτυχιακός φοιτητής αν αποκτήσει την ικανότητα στην ανάλυση και σύνθεση προχωρημένων γνώσεων αλγεβρικής θεωρίας αριθμών. |
Περιεχόμενο Μαθήματος
Περιοχές Dedekind, Νόρμες, διακρίνουσα, πεπερασμένο του αριθμού κλάσης, θεώρημα μονάδων του Dirichlet, τετραγωνικές και κυκλοτομικές επεκτάσεις, τετραγωνική αντιστροφή, πληρώσεις και τοπικά σώματα.
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
Τρόπος Παράδοσης | Πρόσωπο με πρόσωπο | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών | |||||||||||
Οργάνωση Διδασκαλίας |
| ||||||||||
Αξιολόγηση Φοιτητών | Γραπτή εξέταση στο τέλος του εξαμήνου (υποχρεωτική), εργασίες ή/και ενδιάμεση εξέταση (προαιρετική). |
Συνιστώμενη Βιβλιογραφία
- Milne, James S., Algebraic Number Theory (v3.07), (2017). Available at www.jmilne.org/math/.
- Jarvis Frazer, Algebraic Number Theory, Springer, 2014.