Ειδικά Θέματα Άλγεβρας (ΑΛ6)

Από Wiki Τμήματος Μαθηματικών

Περιγράμματα Μεταπτυχιακών Μαθημάτων - Τμήμα Μαθηματικών

Γενικά

Σχολή Σχολή Θετικών Επιστημών
Τμήμα Τμήμα Μαθηματικών
Επίπεδο Σπουδών Μεταπτυχιακό
Κωδικός Μαθήματος ΑΛ6
Εξάμηνο 2
Τίτλος Μαθήματος ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ
Αυτοτελείς Διδακτικές Δραστηριότητες Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 7.5)
Τύπος Μαθήματος Ειδικού υποβάθρου
Προαπαιτούμενα Μαθήματα
Γλώσσα Διδασκαλίας και Εξετάσεων Ελληνική
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus Ναι (στην Αγγλική γλώσσα)
Ηλεκτρονική Σελίδα Μαθήματος (URL) Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων.

Μαθησιακά Αποτελέσματα

Μαθησιακά Αποτελέσματα Ο βασικός σκοπός του μαθήματος είναι η εισαγωγή στις κυριότερες έννοιες, εργαλεία και μεθόδους της Θεωρίας Αναπαραστάσεων Ομάδων με τις εφαρμογές της σε άλλους κλάδους των Μαθηματικών, ιδιαίτερα στη Θεωρία Ομάδων, και σε συναφείς επιστήμες, για παράδειγμα στη Φυσική. Στο τέλος τού μαθήματος περιμένουμε από τον φοιτητή να έχει κατανοήσει τους ορισμούς και τα βασικά θεωρήματα τα οποία αναλύονται στο μάθημα, να έχει κατανοήσει πως αυτά εφαρμόζονται σε διακεκριμένα παραδείγματα προερχόμενα από διαφορετικούς κλάδους των Μαθηματικών και άλλων επιστημών, να είναι σε θέση να τα εφαρμόζει για την εξαγωγή νέων στοιχειωδών συμπερασμάτων σε διάφορα πεδία, και τέλος να μπορεί να εκτελεί ορισμένους (όχι τόσο προφανείς) υπολογισμούς οι οποίοι σχετίζονται με προβλήματα της θεωρίας ομάδων.
Γενικές Ικανότητες

Το μάθημα αποσκοπεί στο να μπορεί ο πτυχιούχος να αποκτήσει ικανότητα στην ανάλυση και σύνθεση βασικών γνώσεων της Θεωρίας Αναπαραστάσεων Ομάδων, η οποία αποτελεί ένα σημαντικό κλάδο των σύγχρονων Μαθηματικών, ιδιαίτερα της Άλγεβρας, και η οποία έχει πολλές εφαρμογές σε διάφορους κλάδους των Μαθηματικών και άλλων επιστημών, για παράδειγμα στη Φυσική. Ερχόμενος ο πτυχιούχος για πρώτη φορά σε επαφή με έννοιες της Θεωρίας Αναπαραστάσεων Ομάδων, προάγεται η δημιουργική, αναλυτική και επαγωγική σκέψη του, και η ικανότητά του να εφαρμόζει αφηρημένες γνώσεις σε διάφορα πεδία τα οποία αποτελούν θέματα αιχμής σε διάφορους κλάδους των Μαθηματικών και συναφών επιστημών.

Περιεχόμενο Μαθήματος

  • Αναπαραστάσεις και Χαρακτήρες Ομάδων.
  • Ομάδες και Ομομορφισμοί.
  • FG-πρότυπα και Ομαδο-άλγεβρες.
  • Το Λήμμα του Schur και το θεώρημα του Maschke.
  • Ομαδο-άλγεβρες και ανάγωγα πρότυπα.
  • Κλάσεις συζυγίας και χαρακτήρες.
  • Πίνακες χαρακτήρων και σχέσεις ορθογωνιότητας.
  • Κανονικές υποομάδες και ανυψωμένοι χαρακτήρες.
  • Παραδείγματα στοιχειωδών πινάκων χαρακτήρων.
  • Τανυστικά γινόμενα. Περιορίζοντας αναπαραστάσεις σε υποομάδες.
  • Εφαρμογές.

Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση

Τρόπος Παράδοσης Πρόσωπο με πρόσωπο.
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών
Οργάνωση Διδασκαλίας
Δραστηριότητα Φόρτος Εργασίας Εξαμήνου
Διαλέξεις 39
Μελέτη της θεωρίας 78
Eπίλυση ασκήσεων 70.5
Σύνολο Μαθήματος 187.5
Αξιολόγηση Φοιτητών Η αξιολόγηση βασίζεται συνδυαστικά στις επιδόσεις του μεταπτυχιακού φοιτητή σε:
  • Εβδομαδιαίες εργασίες,
  • Παρουσιάσεις κατά τη διάρκεια του εξαμήνου,
  • Εργασία στο τέλος του μαθήματος, Γραπτή εξέταση στο τέλος των μαθημάτων στα Ελληνικά με ερωτήσεις και θέματα ανάπτυξης και επίλυσης προβλημάτων.

Συνιστώμενη Βιβλιογραφία

  • Μαλιάκας Μιχάλης, Εισαγωγή στην Μεταθετική Άλεβρα, Εκδόσεις Σοφία, 2008
  • Atiyah, M. F.; Macdonald, I. G., Introduction to commutative algebra. Addison-Wesley Publishing Co., 1969 ix+128 pp.