Numerical Linear Algebra (MAE685)
Από Wiki Τμήματος Μαθηματικών
Αναθεώρηση ως προς 15:23, 25 Νοεμβρίου 2022 από τον Mathwikiadmin (συζήτηση | συνεισφορές)
General
School |
School of Science |
---|---|
Academic Unit |
Department of Mathematics |
Level of Studies |
Undergraduate |
Course Code |
ΜΑΕ685 |
Semester |
6 |
Course Title |
Numerical Linear Algebra |
Independent Teaching Activities |
Lectures (Weekly Teaching Hours: 3, Credits: 6) |
Course Type |
Special Background |
Prerequisite Courses | - |
Language of Instruction and Examinations |
Greek |
Is the Course Offered to Erasmus Students |
Yes (in English) |
Course Website (URL) | See eCourse, the Learning Management System maintained by the University of Ioannina. |
Learning Outcomes
Learning outcomes |
Upon successful completion of this course, students will be able to:
|
---|---|
General Competences |
|
Syllabus
- Introduction to matrix theory. Singular Value Decomposition (SVD). Matrix condition number and conditioning of linear systems.
- The linear least squares problem, QR method, Householder transformations.
- Direct methods (LU Factorization, Cholesky Factorization).
- Iterative methods: Jacobi, Gauss-Seidel, SOR method, steepest descent method, conjugate gradient method.
- Computation of eigenvalues and eigenvectors.
- Applications (PageRank Google search algorithm, image processing, etc.)
Teaching and Learning Methods - Evaluation
Delivery |
Face-to-face | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Use of Information and Communications Technology |
| ||||||||||||
Teaching Methods |
| ||||||||||||
Student Performance Evaluation |
|
Attached Bibliography
See the official Eudoxus site or the local repository of Eudoxus lists per academic year, which is maintained by the Department of Mathematics. Books and other resources, not provided by Eudoxus:
- “Αριθμητική Γραμμική Άλγεβρα”, Β. Δουγαλής, Δ. Νούτσος, & Α. Χατζηδήμος, Τυπογραφείο Πανεπιστημίου Ιωαννίνων.
- “Numerical Linear Algebra”, L. Trefethen, & D. Bau, SIAM, 1997.
- “Matrix Computations”, G. Golub, C. Van Loan, 3rd edition, Johns Hopkins Univ. Press 1996.
- “Iterative Methods for Sparse Linear Systems”, Y. Saad, PWS Publishing, 1996.
- “Linear Algebra and Learning from Data”, G. Strang, Wellesley-Cambridge Press, 2019.
- “Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control”, S. Brunton, & J. Kutz, Cambridge: Cambridge University Press, 2019. doi:10.1017/9781108380690.