Διαφορική Γεωμετρία (ΓΕ2)
Από Wiki Τμήματος Μαθηματικών
Αναθεώρηση ως προς 12:02, 15 Ιουνίου 2023 από τον Mathwikiadmin (συζήτηση | συνεισφορές)
- English version
- Περιγράμματα Μεταπτυχιακών Μαθημάτων
- Τροποποίηση Περιγράμματος (η δυνατότητα αυτή απευθύνεται αποκλειστικά στα μέλη ΔΕΠ του Τμήματος)
- Τμήμα Μαθηματικών
- Αποθήκευση ως PDF ή Εκτύπωση (για αποθήκευση ως PDF, κάντε την σχετική επιλογή στη λίστα εκτυπωτών που θα εμφανιστεί)
Γενικά
Σχολή | Σχολή Θετικών Επιστημών |
---|---|
Τμήμα | Τμήμα Μαθηματικών |
Επίπεδο Σπουδών | Μεταπτυχιακό |
Κωδικός Μαθήματος | ΓΕ2 |
Εξάμηνο | 1 |
Τίτλος Μαθήματος | ΔΙΑΦΟΡΙΚΗ ΓΕΩΜΕΤΡΙΑ |
Αυτοτελείς Διδακτικές Δραστηριότητες | Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 7.5) |
Τύπος Μαθήματος | Ειδικού Υποβάθρου |
Προαπαιτούμενα Μαθήματα | Γραμμική Άλγεβρα, Γενική Τοπολογία, Ανάλυση Πολλών Μεταβλητών. |
Γλώσσα Διδασκαλίας και Εξετάσεων | Ελληνική |
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus | Ναι (στην Αγγλική γλώσσα) |
Ηλεκτρονική Σελίδα Μαθήματος (URL) | Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων. |
Μαθησιακά Αποτελέσματα
Μαθησιακά Αποτελέσματα | Περιγράφονται τα μαθησιακά αποτελέσματα του μαθήματος οι συγκεκριμένες γνώσεις, δεξιότητες και ικανότητες καταλλήλου επιπέδου που θα αποκτήσουν οι φοιτητές μετά την επιτυχή ολοκλήρωση του μαθήματος.
Συμβουλευτείτε το Παράρτημα Α
Ο βασικός σκοπός του μαθήματος είναι η εισαγωγή στις θεμελιώδεις έννοιες και στα εργαλεία της θεωρίας των διαφορίσιμων πολυπτυγμάτων. Εισάγονται βασικές έννοιες, όπως διαφορίσιμα πολύπτυγμα, διαφορίσιμα πολυπτύγματα με σύνορο, διανυσματική δέσμη, συνοχή, διαφορίσιμα υποπολυπτύγματα και συνομολογία de Rham. Το μάθημα αυτό αποτελεί βασική προϋπόθεση για το μάθημα της Γεωμετρίας Riemann. Στο τέλος του μαθήματος περιμένουμε από τον μεταπτυχιακό φοιτητή να έχει κατανοήσει τις έννοιες, τους ορισμούς και τα κύρια θεωρήματα τα οποία αναλύονται στο μάθημα. |
---|---|
Γενικές Ικανότητες | Το μάθημα αποσκοπεί στο να μπορεί ο φοιτητής να αποκτήσει ικανότητα στην ανάλυση και σύνθεση βασικών γνώσεων στη σύγχρονη Διαφορική Γεωμετρία. |
Περιεχόμενο Μαθήματος
- Τοπολογικά και διαφορίσιμα πολυπτύγματα.
- Διαφορίσιμες απεικονίσεις.
- Εφαπτόμενη και συνεφαπτόμενη δέσμη.
- Διανυσματικά πεδία και ροές.
- Διαφορίσιμα υποπολυπτύγματα-Θεώρημα του Frobenius.
- Διανυσματικές δέσμες.
- Συνοχές και παράλληλη μεταφορά.
- Διαφορικές μορφές.
- Συνομολογία de Rham.
- Ολοκλήρωση σε πολυπτύγματα με σύνορο.
- Το θεώρημα του Stokes.
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
Τρόπος Παράδοσης | Πρόσωπο με πρόσωπο | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών | |||||||||||
Οργάνωση Διδασκαλίας |
| ||||||||||
Αξιολόγηση Φοιτητών | Εβδομαδιαίες εργασίες, παρουσιάσεις, γραπτές εξετάσεις στο τέλος των μαθημάτων στα Ελληνικά με ερωτήσεις και θέματα ανάπτυξης και επίλυσης προβλημάτων. |
Συνιστώμενη Βιβλιογραφία
- M. do Carmo, Riemannian Geometry, Birkhaüser Boston, Inc., Boston, MA, 1992.
- J. Jost, Riemannian Geometry and Geometric Analysis, Seventh edition, Universitext, Springer, 2017.
- J. Lee, Introduction to smooth manifolds, Second edition, Graduate texts in Mathematics, 218, Springer, 2013.
- Δ. Κουτρουφιώτης, Διαφορική Γεωμετρία, Πανεπιστήμιο Ιωαννίνων, 1994.