Μαθηματικός Προγραμματισμός (ΣEE3)

Από Wiki Τμήματος Μαθηματικών
Αναθεώρηση ως προς 12:05, 15 Ιουνίου 2023 από τον Mathwikiadmin (συζήτηση | συνεισφορές)
(διαφορά) ← Παλαιότερη αναθεώρηση | Τελευταία αναθεώρηση (διαφορά) | Νεότερη αναθεώρηση → (διαφορά)

Γενικά

Σχολή Σχολή Θετικών Επιστημών
Τμήμα Τμήμα Μαθηματικών
Επίπεδο Σπουδών Μεταπτυχιακό
Κωδικός Μαθήματος ΣEE3
Εξάμηνο 1
Τίτλος Μαθήματος ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
Αυτοτελείς Διδακτικές Δραστηριότητες Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 7.5)
Τύπος Μαθήματος Ειδικότητας
Προαπαιτούμενα Μαθήματα
Γλώσσα Διδασκαλίας και Εξετάσεων Ελληνική
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus Ναι (στην Αγγλική γλώσσα)
Ηλεκτρονική Σελίδα Μαθήματος (URL) Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων.

Μαθησιακά Αποτελέσματα

Μαθησιακά Αποτελέσματα Στόχοι του μαθήματος είναι: η εισαγωγή των φοιτητών στο μαθηματικό προγραμματισμό με έμφαση στις τεχνικές επίλυσης ντετερμινιστικών μοντέλων και στην ανάλυση της υποκείμενης μαθηματικής δομής αυτών των μοντέλων. Με την επιτυχή ολοκλήρωση του μαθήματος ο φοιτητής /τρια θα είναι σε θέση να:
  • μοντελοποιεί πολύπλοκα συστήματα
  • εμπεδώσει την αυστηρά μαθηματική θεμελίωση της μεθόδου Simplex
  • κατανοεί και εφαρμόζει τεχνικές που χρησιμοποιούνται για την επίλυση γραμμικών προβλημάτων βελτιστοποίησης
  • εφαρμόζει τεχνικές δυναμικού προγραμματισμού
  • αναγνωρίζει και εφαρμόζει τις κατάλληλες πολιτικές διαχείρισης αποθεμάτων (ανάλογα με τις υφιστάμενες κάθε φορά υποθέσεις του συστήματος)
Γενικές Ικανότητες
  • Αυτόνομη εργασία
  • Λήψη αποφάσεων
  • Προσαρμογή σε νέες καταστάσεις
  • Προαγωγή της ελεύθερης, δημιουργικής και επαγωγικής σκέψης
  • Σύνθεση δεδομένων και πληροφοριών, με τη χρήση και των απαραίτητων τεχνολογιών

Περιεχόμενο Μαθήματος

Μοντελοποίηση προβλημάτων γραμμικού προγραμματισμού. Ο αλγόριθμος Simplex. Μέθοδος του μεγάλου Μ. Μέθοδος δύο φάσεων. Αναθεωρημένη μέθοδος Simplex. Δυική θεωρία. Δυικός αλγόριθμος Simplex. Ανάλυση ευαισθησίας. Παραμετρική ανάλυση. Τα προβλήματα μεταφοράς, μεταφόρτωσης και εκχώρησης. Δυναμικός προγραμματισμός: Η αρχή βελτιστοποίησης του Bellman. Μαθηματικά μοντέλα διακριτού δυναμικού τύπου με βέβαιο μέλλον. Εφαρμογές του δυναμικού προγραμματισμού. Θέματα διαχείρισης αποθεμάτων.

Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση

Τρόπος Παράδοσης Στην τάξη
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών
  • Χρήση Lindo/Lingo Software
  • Χρήση Τ.Π.Ε. στην Επικοινωνία
Οργάνωση Διδασκαλίας
Δραστηριότητα Φόρτος Εργασίας Εξαμήνου
Διαλέξεις 39
Αυτοτελής Μελέτη 70
Ασκήσεις Πεδίου (7-8 σύνολα ασκήσεων) 78.5
Σύνολο Μαθήματος 187.5
Αξιολόγηση Φοιτητών
  • Γραπτές εργασίες (30%)
  • Γραπτή τελική εξέταση (70%)

Συνιστώμενη Βιβλιογραφία

  • Bellman, R.E.. Dynamic Programming, Princeton University Press, 1957, Princeton, NJ. Republished 2003
  • Bertsekas D. P. Dynamic Programming and Optimal Control, Vols. I and II, Athena Scientific, 1995, (3rd Edition Vol. I, 2005, 4th Edition Vol. II, 2012),
  • Bertsimas D. and J. N. Tsitsiklis Introduction to Linear Optimization, Athena Scientific 1997
  • Gass S. Linear Programming Methods and Applications, McGraw-Hill 1985
  • Hadley G. Linear Programming, Addison-Wesley Publishing Company, INC, 1965
  • Taha H., Επιχειρησιακή Έρευνα Εκδόσεις Α. Τζιολα & ΥΙΟΙ Α.Ε., 2011
  • Hillier F. S. and G. J. Lieberman Introduction Operations research. The McGraw-Hill Companies, 2001
  • Johnson L. A. and D. C Douglas, Operations research in production planning scheduling and inventory control. John Willey and Sons, New-York, 1974
  • Silver E. A., D.F. Pyke and R. Peterson, Inventory Management and Production Planning and Scheduling. John Willey and Sons, New-York, 3rd Edition, 1998
  • Tersine R. J., Principles of inventory and materials management, Prentice Hall International Inc, New Jersey, 4rd Edition, 1994
  • Wagner H.M and T.M Within (1958) Dynamic version of the economic lot size model. Management Science, 5(1), 89-96
  • Winston W. L., Operations research (Applications and algorithms). Duxbury Press (International Thomson Publishing) 1994.
  • Βασιλειου Π. και Τσαντας Ν., Εισαγωγή στην επιχειρησιακή έρευνα, Εκδόσεις ΖΗΤΗ 2000.
  • Κολετσος Ι., και Στογιαννης Δ. Εισαγωγή στην επιχειρησιακή έρευνα, Εκδόσεις Συμεών, 2012
  • Κουνιας Σ. και Φακινος Δ., Γραμμικός Προγραμματισμός, Εκδόσεις ΖΗΤΗ, Θεσσαλονίκη 1999.
  • Λουκακης Μ. Επιχειρησιακή έρευνα γραμμικός προγραμματισμός, Εκδοτικό Κέντρο Βορείου Ελλάδας, 1994.
  • Παπαρριζος Κ., Γραμμικός Προγραμματισμός. Εκδόσεις Ζυγός, Θεσσαλονίκη 1999.
  • Σισκος Γ., Γραμμικός Προγραμματισμός, Εκδόσεις Νέων Τεχνολογιών, Αθήνα 1998.
  • Φακινου Δ. και Οικονομου Α., Εισαγωγή στην επιχειρησιακή έρευνα- Θεωρία και Ασκήσεις, Αθήνα 2003.
  • [Περιοδικό / Journal] Mathematical Programming Journal, Series A and Series B
  • [Περιοδικό / Journal] INFORMS Transactions on Education (ITE)
  • [Περιοδικό / Journal] Interfaces