Στοχαστική Ανάλυση και Εφαρμογές (ΣEE15)

Από Wiki Τμήματος Μαθηματικών
Αναθεώρηση ως προς 12:06, 15 Ιουνίου 2023 από τον Mathwikiadmin (συζήτηση | συνεισφορές)
(διαφορά) ← Παλαιότερη αναθεώρηση | Τελευταία αναθεώρηση (διαφορά) | Νεότερη αναθεώρηση → (διαφορά)

Γενικά

Σχολή Σχολή Θετικών Επιστημών
Τμήμα Τμήμα Μαθηματικών
Επίπεδο Σπουδών Μεταπτυχιακό
Κωδικός Μαθήματος ΣEE15
Εξάμηνο 2
Τίτλος Μαθήματος ΣΤΟΧΑΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΦΑΡΜΟΓΕΣ
Αυτοτελείς Διδακτικές Δραστηριότητες Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 7.5)
Τύπος Μαθήματος Ειδικότητας
Προαπαιτούμενα Μαθήματα
Γλώσσα Διδασκαλίας και Εξετάσεων Ελληνική
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus Ναι (στην Αγγλική γλώσσα)
Ηλεκτρονική Σελίδα Μαθήματος (URL) Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων.

Μαθησιακά Αποτελέσματα

Μαθησιακά Αποτελέσματα Στόχος του μαθήματος είναι: η παρουσίαση των βασικών εννοιών του Ito λογισμού, οι διαδικασίες martingale, οι στοχαστικές διαφορικές εξισώσεις και οι διαδικασίες διάχυσης. Επίσης, η εφαρμογή των παραπάνω στα γραμμικά φίλτρα, στο βέλτιστο στοχαστικό έλεγχο, τα χρηματοοικονομικά παράγωγα. Με την επιτυχή ολοκλήρωση του μαθήματος οι φοιτητές θα είναι σε θέση να:
  • γνωρίζουν τα κύρια αποτελέσματα και τις βασικές εφαρμογές του στοχαστικού Ito λογισμού
  • κατανοούν στοχαστικές διαφορικές εξισώσεις
  • κατανοούν martingale
  • χρησιμοποιούν αριθμητικές μεθόδους για την επίλυση στοχαστικών διαφορικών εξισώσεων
  • χρησιμοποιούν μεθόδους στοχαστικής ανάλυσης σε διαφορες περιοχες εφαρμογών.
Γενικές Ικανότητες
  • Αυτόνομη εργασία
  • Λήψη αποφάσεων
  • Προσαρμογή σε νέες καταστάσεις
  • Προαγωγή της ελεύθερης, δημιουργικής και επαγωγικής σκέψης
  • Σύνθεση δεδομένων και πληροφοριών, με τη χρήση και των απαραίτητων τεχνολογιών.

Περιεχόμενο Μαθήματος

Στοχαστικές διαδικασίες σε συνεχή χρόνο. Κινηση Brown. Ito στοχαστικός λογισμός. Διαδικασίες Martingale. Στοχαστικές διαφορικές εξισώσεις: ύπαρξη και μοναδικότητα της λύσης. Θεωρία των διάχυσης: διαδικασίες Markov, φόρμουλα Dynkin, θεώρημα Girsanov. Εφαρμογές: γραμμικά φίλτρα, βέλτιστος στοχαστικός έλεγχος, χρηματοοικονομικά παράγωγα.

Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση

Τρόπος Παράδοσης Πρόσωπο με πρόσωπο
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών Χρήση Τ.Π.Ε. στην Επικοινωνία
Οργάνωση Διδασκαλίας
Δραστηριότητα Φόρτος Εργασίας Εξαμήνου
Διαλέξεις 39
Αυτοτελής Μελέτη 70
Ασκήσεις Πεδίου - Συγγραφή εργασίας 78.5
Σύνολο Μαθήματος 187.5
Αξιολόγηση Φοιτητών
  • Γραπτές εργασίες (30%)
  • Γραπτή τελική εξέταση (70%)

Συνιστώμενη Βιβλιογραφία

  • Karatzas I. and S. Shreve. Brownian Motion and Stochastic Calculus. Springer. 1998
  • Lamberton, D. & Lapeyre, B. (1996). Introduction to Stochastic Calculus Applied to Finance. Chapman & Hall.
  • Oksendal B.: Stochastic Differential Equations, 6th edition. Springer 2007.
  • Revuz D. and M. Yor. Continuous martingales and Brownian motion. Springer. 2001
  • Rogers L.C. and D. Williams.Diffusions, Markov Processes and Martingales. Vol.1 and 2, Cambridge University Press. 2002
  • Steele J. M., Stochastic Calculus and Financial Applications, 2001.
  • [Περιοδικό / Journal] Stochastic Analysis and Applications.