Introduction to Ordinary Differential Equations (MAY514)
Undergraduate Courses Outlines - Department of Mathematics
General
School |
School of Science |
---|---|
Academic Unit |
Department of Mathematics |
Level of Studies |
Undergraduate |
Course Code |
ΜΑΥ514 |
Semester | 5 |
Course Title |
Introduction to Differential Equations |
Independent Teaching Activities |
Lectures (Weekly Teaching Hours: 5, Credits: 7.5) |
Course Type |
General Background |
Prerequisite Courses | - |
Language of Instruction and Examinations |
Greek |
Is the Course Offered to Erasmus Students |
Yes |
Course Website (URL) |
Through the platform “e-course” of the University of Ioannina |
Learning Outcomes
Learning outcomes |
The course is the introductory course to ordinary differential equations and aims to a general introductory description of the area of ordinary differential equations. It is expected that the students take basic knowledge on:
|
---|---|
General Competences |
|
Syllabus
Introduction to differential equations and initial value problems. O.d.e.’s of some special types (Bernoulli, Riccati, Clairaut, Lagrange). Equations with separated variables. Exact equations. Integral factors. Second order equations reduced to first order equations. Existence and uniqueness theorems. General theory of linear o.d.e.’s. Linear equations and systems with constant coefficients. Power series solutions for second order d.e.’s. Partial differential equations: solutions to first order equations, classification of linear equations of second order. Applications of d.e.’s to problems arising in various areas of science and technology.
Teaching and Learning Methods - Evaluation
Delivery |
Face-to-face (Lectures) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Use of Information and Communications Technology |
The platform “e-course” of the University of Ioannina | ||||||||||
Teaching Methods |
| ||||||||||
Student Performance Evaluation |
Written Final Examination (Theory and Exercises) 100% |
Attached Bibliography
See the official Eudoxus site or the local repository of Eudoxus lists per academic year, which is maintained by the Department of Mathematics. Additionally:
- Χ. Φίλος, Μία Εισαγωγή στις Διαφορικές Εξισώσεις
- R. Agarwal, D. O’Regan, H. Agarwal, Introductory Lectures on Ordinary Differential Equations
- F. Ayres, Differential Equations