Θέματα Πτυχιακής Εργασίας 2023-2024

Από Wiki Τμήματος Μαθηματικών

Παρακαλούμε, δείτε τον Κανονισμό Εκπόνησης Πτυχιακής Εργασίας πριν επιλέξετε θέμα και πριν έρθετε σε επαφή με τον διδάσκοντα. Ο Κανονισμός Εκπόνησης Πτυχιακής Εργασίας περιλαμβάνει προϋποθέσεις, διαδικασίες και προβλέψεις τις οποίες πρέπει να γνωρίζετε πριν κάνετε οποιαδήποτε περαιτέρω ενέργεια.

Τομέας Μαθηματικής Ανάλυσης

Μαυρίδης Κυριάκος

Δεν έχουν τεθεί προαπαιτούμενα μαθήματα επιλογής.

Απόλυτα Συνεχείς Συναρτήσεις (Absolutely Continuous Functions)
(η περιγραφή θα προστεθεί σύντομα)
Θεωρήματα Σταθερού Σημείου σε Ασθενή Τοπολογία (Fixed Point Theory under Weak Topology)
(η περιγραφή θα προστεθεί σύντομα)
Κλασματικός Λογισμός (Fractional Calculus)
(η περιγραφή θα προστεθεί σύντομα)

Σταματάκης Μάριος-Γεώργιος

Αρχή των μεγάλων αποκλίσεων
Προαπαιτούμενα μαθήματα επιλογής: Θεωρία Μέτρου.
Ο νόμος των μεγάλων αριθμών είναι από τα κεντρικότερα αποτελέσματα της Θεωρίας Πιθανοτήτων. Μέσω αυτού αναδύεται η στατιστική κανονικότητα από την αβεβαιότητα των τυχαίων φαινομένων. Έτσι ένα σημαντικό ερώτημα είναι το πόσο γρήγορα αρχίζει να ισχύει ο νόμος των μεγάλων αριθμών. Π.χ. γνωρίζουμε ότι αν ρίξουμε ένα αμερόληπτο κέρμα αρκετές φορές, τότε η σχετική συχνότητα εμφάνισης κορώνας είναι περίπου 1/2. Όμως πόσες φορές πρέπει να ρίξουμε ένα κέρμα ώστε η σχετική συχνότητα εμφάνισης κορώνας να πλησιάσει το 1/2 κατά μία δεδομένη απόκλιση, π.χ. χιλιοστού; Η απάντηση ερωτημάτων αυτού του τύπου είναι το αντικείμενο της θεωρίας των μεγάλων αποκλίσεων. Στην εργασία αυτή θα μελετήσουμε τις βασικές αρχές της θεωρίας των μεγάλων αποκλίσεων και θα δούμε εφαρμογές στα μαθηματικά και τη στατιστική φυσική.
Το πρόβλημα βέλτιστης μεταφοράς μάζας
Προαπαιτούμενα μαθήματα επιλογής: Θεωρία Μέτρου.
Το πρόβλημα βέλτιστης μεταφοράς μάζας διατυπώθηκε αρχικά από τον Monge το 1781: Ας υποθέσουμε ότι θέλουμε να μεταφέρουμε μία ποσότητα μάζας σε μία αποθήκη και ότι για να μεταφέρουμε μία μονάδα μάζας από τη θέση \(x\) στη θέση \(y\) της αποθήκης πρέπει να πληρώσουμε ένα κόστος \(c(x,y)\). Πώς πρέπει να μεταφέρουμε τη μάζα ώστε να πληρώσουμε συνολικά το μικρότερο δυνατό κόστος; Το πρόβλημα παρέμεινε σε μεγάλο βαθμό άλυτο έως το 1942 όπου διατυπώθηκε από τον Kantorovich σε κατάλληλα ασθενή μορφή. Στην ειδική περίπτωση όπου το κόστος που πληρώνουμε είναι κάποια δύναμη της απόστασης των σημείων \(x\) και \(y\), το συνολικό κόστος ορίζει μετρική στο σύνολο των κατανομών δεδομένης μάζας. Από το 2000 και έπειτα έχει γίνει φανερό ότι οι μετρικές αυτές καθώς και η γεωμετρία της βέλτιστης μεταφοράς μάζας έχουν εφαρμογές σε πολλούς και διαφορετικούς μεταξύ τους κλάδους των μαθηματικών όπως: οι μερικές διαφορικές εξισώσεις, η κυρτή γεωμετρία, η μετρική γεωμετρία και η θεωρία πιθανοτήτων.
Μετρική Γεωμετρία
Προαπαιτούμενα μαθήματα επιλογής: -
Η μετρική γεωμετρία είναι ο κλάδος που μελετά τη γεωμετρία των μετρικών χώρων μέσω της καμπυλών ελάχιστου μήκους. Οι καμπύλες αυτές παίζουν το ρόλο των ευθειών της Ευκλείδειας γεωμετρίας, και μέσω αυτών μπορεί κανείς να ορίσει άνω και κάτω φράγματα για την καμπυλότητα των μετρικών χώρων. Στην ειδική περίπτωση πολυπτυγμάτων Riemann τα φράγματα αυτά στην καμπυλότητα αντιστοιχούν σε ένα και κάτω φράγματα στις καμπυλότητες τομής. Σκοπός της εργασίας αυτής είναι να μελετηθούν οι βασικές έννοιες και η βασική θεωρία της μετρικής γεωμετρίας.

Τομέας Άλγεβρας και Γεωμετρίας

Κατσαμπέκης Ανάργυρος

Δεν έχουν τεθεί προαπαιτούμενα μαθήματα επιλογής.

Βάσεις Gröbner ενός διωνυμικού ιδεώδους ακμών γραφήματος
Σε κάθε απλό γράφημα G αντιστοιχίζουμε το διωνυμικό ιδεώδες ακμών J(G). Χρησιμοποιούμε τα μονοπάτια του G για να υπολογίσουμε μία βάση Gröbner για το J(G) ως προς την λεξικογραφική διάταξη. Επίσης δίνουμε ικανές και αναγκαίες συνθήκες για να έχει το ιδεώδες J(G) μια τετραγωνική βάση Gröbner ως προς κάποια μονωνυμική διάταξη.

Κεχαγιάς Επαμεινώνδας

Δεν έχουν τεθεί προαπαιτούμενα μαθήματα επιλογής.

Το Πρωταρχικό Θεώρημα της Θεωρίας Αναλλοιώτων και το Φράγμα της Nother
Έστωσαν F ένα σώμα, μια πεπερασμένη ομάδα G και F[x1, . . . , xn] μια πολυωνυμική άλγεβρα μαζί με έναν ομομορφισμό ομάδων ρ:G→GL(V). Μέσω του ομομορφισμού έχουμε μια δράση της G στον διανυσματικό χώρο V=<e1, . . . ,en> και θεωρούμε ότι ο δυϊκός χώρος του V είναι ο V=<x1, . . . ,xn>. Ορίζεται λοιπόν μια δράση της G στο χώρο των πολυωνύμων. Το αντικείμενο της Θεωρίας Αναλλοιώτων είναι να βρεθούν τα πολυώνυμα τα οποία μένουν αναλλοίωτα κάτω από τη δράση της ομάδας G. Το πρόβλημα αυτό άρχισε να απασχολεί τη μαθηματική κοινότητα κυρίως από τον δέκατο ένατο αιώνα με ουσιώδη συνεισφορά του Hilbert και της Nother. Σκοπός αυτής της πτυχιακής εργασίας είναι να αποδειχθεί το Πρωταρχικό Θεώρημα της Θεωρίας Αναλλοιώτων και να υπολογισθεί το Φράγμα της Nother. Μέσω αυτών μπορούμε να μελετήσουμε βασικές αλγεβρικές ιδιότητες του δακτυλίου των αναλλοιώτων πολυωνύμων, όπως ότι είναι μια πεπερασμένως παραγόμενη άλγεβρα, κατασκευή αναλλοιώτων πολυωνύμων και πόσα τέτοια πολυώνυμα υπάρχουν σε συγκεκριμένο βαθμό. Αποτελεί ένα μείγμα άλγεβρας και γεωμετρίας και είναι μια εισαγωγή στην αντιμετα- θετική άλγεβρα με εφαρμογές στη θεωρία αναπαραστάσεων - συνομολογία ομάδων - αλγεβρική τοπολογία.
Οι Ομάδες του Artin και εφαρμογές στην Κρυπτογραφία
Οι ομάδες του Artin συνδέουν με πολύ όμορφο τρόπο τη Θεωρία Ομάδων με την Τοπολογία. Στην συγκεκριμένη πτυχιακή εργασία θα μελετήσουμε αλγεβρικές ιδιότητες των ομάδων του Artin και εφαρμογές στην κρυπτογραφία. Η χρήση τους στη κρυπτογραφία σχετίζεται με το αντίστοιχο πρόβλημα της λέξης (word problem) όπως επίσης με τα προβλήματα συζυγίας και ανάλυσης της ομάδας. Τα κρυπτοσυστήματα δημοσίου κλειδιού βασίζονται στο πρόβλημα του διακριτού λογαρίθμου (RSA Diffie - Hellman). Θα μελετήσουμε ένα κρυπτοσύστημα το οποίο βασίζεται στην ομάδα του Artin (Anshel and Goldfeld).
Πεπερασμένες Ομάδες Ισομετριών
Θα δώσουμε μια παρουσίαση της Ευκλείδειας Γεωμετρίας από καθαρά ομαδοθεωρητική σκοπιά σύμφωνα με το Enlanger Programme. Θα ακολουθήσουμε μια "ουσιαστική" παρουσίαση των εννοιών και όχι "αξιωματική". Μια Γεωμετρία ορίζεται από τους επιτρεπτούς μετασχηματισμούς της οπότε θα δούμε τη σχέση της Γεωμετρίας με τη Θεωρία Ομάδων. Θα μελετήσουμε περερασμένες ομάδες ισομετριών και θα τις εφαρμόσουμε στα πλατωνικά στερεά και τις κρυσταλογραφικές ομάδες.

Τομέας Πιθανοτήτων, Στατιστικής και Επιχειρησιακής Έρευνας

-

Τομέας Εφαρμοσμένων και Υπολογιστικών Μαθηματικών

Καρακατσάνη Φωτεινή

Δεν έχουν τεθεί προαπαιτούμενα μαθήματα επιλογής.

Θεωρητική και αριθμητική μελέτη συστημάτων συνήθων διαφορικών εξισώσεων που μοντελοποιούν την εξάντληση των δασικών πόρων λόγω της πληθυσμιακής πίεσης και της εκβιομηχάνισης
Τα δάση καλύπτουν περίπου το ένα τρίτο της επιφάνειας της Γης και, σύμφωνα με την WWF, παρέχουν ενδιαιτήματα για το «80% της χερσαίας βιοποικιλότητας του κόσμου» και διατηρούν μια ισορροπία οξυγόνου και διοξειδίου του άνθρακα στην ατμόσφαιρα. Οι άνθρωποι σήμερα καθαρίζουν κάθε δευτερόλεπτο μια περιοχή μεγέθους γηπέδου ποδοσφαίρου από τα δέντρα είτε για χρήση των δασικών πόρων, είτε για να χρησιμοποιήσουν τις εκτάσεις αυτές με μη βιώσιμο τρόπο για τη γεωργία, την εκτροφή βοοειδών, την εξόρυξη, το πετρέλαιο, στέγαση κ.λ.π. Η συνεχής αποψίλωση των δασών έχει καταστροφικές επιπτώσεις στο οικοσύστημά μας. Είναι σαφές ότι η συνεχής αύξηση του ανθρώπινου πληθυσμού και της εκβιομηχάνισης και η μη επαρκής διατήρηση των δασικών πόρων ή μη προσπάθειες βιωσιμότητας, θα οδηγήσουν στην εξαφάνιση των δασών, καταστρέφοντας αναπόφευκτα τον πλανήτη όπως τον ξέρουμε σήμερα. Σε αυτή την πτυχιακή εργασία θα μελετηθούν (με θεωρητικές και αριθμητικές τεχνικές) συστήματα συνήθων διαφορικών εξισώσεων που μοντελοποιούν τη σχέση μεταξύ της αύξησης του ανθρώπινου πληθυσμού, της αντίστοιχης ανάπτυξης της βιομηχανίας, και της εξάντλησης των απαραίτητων δασικών πόρων του πλανήτη μας.
Μελέτη μη γραμμικών συστημάτων συνήθων διαφορικών εξισώσεων που μοντελοποιούν επιπτώσεις της κλιματικής αλλαγής στην οικολογία και την ανθρώπινη υγεία
Η υπερθέρμανση του πλανήτη έχει αποτελέσει θέμα τεράστιων συζητήσεων και διαφωνιών την τελευταία δεκαετία λόγω των πιθανών πολυάριθμων δυσμενών επιπτώσεών της στην οικολογία και την ανθρώπινη υγεία. Το θέμα αυτής της πτυχιακής εργασίας θα είναι η μελέτη, με αναλυτικές και αριθμητικές μεθόδους, μη γραμμικών συστημάτων συνήθων διαφορικών εξισώσεων που μοντελοποιούν τις επιπτώσεις της κλιματικής αλλαγής είτε στην οικολογία είτε στη μετάδοση ασθενειών. Αριθμητικές μέθοδοι, όπως οι μέθοδοι Runge-Kutta θα εφαρμοστούν για την αριθμητική επίλυση των παραπάνω συστημάτων διαφορικών εξισώσεων.

Μπέκος Μιχάλης

Ως προαπαιτούμενα μαθήματα επιλογής έχουν τεθεί τα: "Σχεδίαση και Ανάλυση Αλγορίθμων" και "Δομές Δεδομένων".

Σχεδίαση γραφημάτων
Αποτελεί τομέα των μαθηματικών και της επιστήμης των υπολογιστών που συνδυάζει μεθόδους από τη γεωμετρική θεωρία γραφημάτων και την οπτικοποίηση πληροφοριών για την παραγωγή απεικονίσεων γραφημάτων στο Ευκλείδειο επίπεδο ή στον τρισδιάστατο χώρο. Για μια σύντομη εισαγωγή, μπορείτε να παρακολουθήσετε εδώ μία σχετική διάλεξη, η οποία αποτελεί μέρος μιας σειράς διαλέξεων στο αντικείμενο αυτό, του Καθ. P. Kindermann.
Γραμμικές διατάξεις γραφημάτων
Αποτελεί τομέα της επιστήμης των υπολογιστών και της συνδυαστικής που εστιάζει στη μελέτη διατάξεων των κορυφών ενός γραφήματος υπό το πρίσμα διαφορετικών συναρτήσεων βελτιστοποίησης. Για μια σύντομη επισκόπηση, μπορείτε να παρακολουθήσετε την εισαγωγή του J. Grime στο NumberPhile, την οποία θα βρείτε εδώ.
Επίλυση δύσκολων προβλημάτων με SAT
Αποτελεί τομέα της επιστήμης των υπολογιστών που εστιάζει στη μοντελοποίηση δύσκολων προβλημάτων συνδυαστικής ή βελτιστοποίησης ως ισοδύναμα προβλήματα SAT (Boolean Satisfiability Problems) και στην επίλυση τους μέσω αντίστοιχων λογισμικών επίλυσης. Για μια εφαρμογή σε γραμμικές διατάξεις γραφημάτων δείτε εδώ.
Αλγοριθμική σήμανση χαρτών
Αποτελεί μέρος της επιστήμης των υπολογιστών, της χαρτογραφίας και δη των γεωγραφικών συστημάτων πληροφοριών που εστιάζει στη μελέτη και ανάπτυξη αλγοριθμικών μεθόδων σήμανσης χαρτών με χρήση προσδιοριστικών ετικετών. Μια εισαγωγή στα προβλήματα που εξετάζονται μπορείτε να βρείτε εδώ.