Scientific Computing (MAE848A)
Undergraduate Courses Outlines - Department of Mathematics
General
School |
School of Science |
---|---|
Academic Unit |
Department of Mathematics |
Level of Studies |
Undergraduate |
Course Code |
MAE848 |
Semester |
8 |
Course Title |
Scientific Computing |
Independent Teaching Activities |
Lectures (Weekly Teaching Hours: 3, Credits: 6) |
Course Type |
Special Background |
Prerequisite Courses | - |
Language of Instruction and Examinations |
Greek |
Is the Course Offered to Erasmus Students |
Yes (in English) |
Course Website (URL) | - |
Learning Outcomes
Learning outcomes |
In most scientific disciplines, the integration of computers has defined new directions to perform research and has offered unprecedented potential to solve complicated problems. Combined with theory and experimentation, computational analysis is nowadays considered an integral part of science and research.
|
---|---|
General Competences |
The course aims to enable the student to:
|
Syllabus
- Initial Value Problems
- Boundary Value Problems
- Finite Difference method
- Equations of Difference
- Shooting methods and Method of undetermined coefficients
- One-step Methods (Euler, Taylor, Runge-Kutta)
- Multi-step Methods (Adams-Bashforth, Adams-Moulton, Predictor-Corrector)
- Finite Element Method (Galerkin).
Teaching and Learning Methods - Evaluation
Delivery |
In the laboratory | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Use of Information and Communications Technology | Use of scientific computing software packages | ||||||||||||
Teaching Methods |
| ||||||||||||
Student Performance Evaluation |
|
Attached Bibliography
See the official Eudoxus site or the local repository of Eudoxus lists per academic year, which is maintained by the Department of Mathematics. Additionally:
- Numerical Methods for Ordinary Differential Equations, 2 Edition, G.D. Akrivis, V.A. Dougalis, 2012 (in Greek).
- A Primer on Scientific Programming with Python, H. P. Langtangen, Springer-Verlag Berlin Heidelberg, 5 Edition, 2016.
- Programming for Computations- MATLAB/Octave, S. Linge, H. P. Langtangen, Springer International Publishing, 2016 (in Greek).
- The Mathematical Theory of Finite Element Method, S. C. Brenner, L. R. Scott, Springer-Verlag, New York, 2008.
- Automated Solution of Differential Equations by the Finite Element Method, A. Logg, K.-A. Mardal, G. N. Wells, Springer-Verlag Berlin Heidelberg, 2012.