Μη Γραμμικός Προγραμματισμός (ΣEE7)

Από Wiki Τμήματος Μαθηματικών
Αναθεώρηση ως προς 08:57, 25 Αυγούστου 2022 από τον Mathwikiadmin (συζήτηση | συνεισφορές) (Νέα σελίδα με 'Περιγράμματα Μεταπτυχιακών Μαθημάτων - [https://math.uoi.gr Τμήμα Μαθηματικών] === Γενικά === {| class="wikitable" |- ! Σχολή | Σχολή Θετικών Επιστημών |- ! Τμήμα | Τμήμα Μαθηματικών |- ! Επίπεδο Σπουδών | Μεταπτυχιακό |- ! Κωδικός Μαθήματος | ΣEE7 |- ! Εξάμηνο | 2 |- ! Τίτλος Μαθήματος | Μ...')
(διαφορά) ← Παλαιότερη αναθεώρηση | Τελευταία αναθεώρηση (διαφορά) | Νεότερη αναθεώρηση → (διαφορά)

Περιγράμματα Μεταπτυχιακών Μαθημάτων - Τμήμα Μαθηματικών

Γενικά

Σχολή Σχολή Θετικών Επιστημών
Τμήμα Τμήμα Μαθηματικών
Επίπεδο Σπουδών Μεταπτυχιακό
Κωδικός Μαθήματος ΣEE7
Εξάμηνο 2
Τίτλος Μαθήματος ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
Αυτοτελείς Διδακτικές Δραστηριότητες Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 6)
Τύπος Μαθήματος Ειδικότητας
Προαπαιτούμενα Μαθήματα
Γλώσσα Διδασκαλίας και Εξετάσεων Ελληνική
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus Ναι (στην Αγγλική γλώσσα)
Ηλεκτρονική Σελίδα Μαθήματος (URL) Δείτε το eCourse, το Σύστημα Διαχείρισης Μάθησης του Πανεπιστημίου Ιωαννίνων.

Μαθησιακά Αποτελέσματα

Μαθησιακά Αποτελέσματα Στόχος του μαθήματος είναι η παρουσίαση των βασικών αρχών του μη γραμμικού προγραμματισμού, σε προβλήματα βελτιστοποίησης με και χωρίς περιορισμούς. Με την επιτυχή ολοκλήρωση του μαθήματος ο φοιτητής /τρια θα είναι σε θέση να:
  • κατανοεί τις βασικές αρχές βελτιστοποίησης μη γραμμικών προβλημάτων
  • χρησιμοποιεί μερικούς από τους ευρέως χρησιμοποιούμενους αλγορίθμους για μη γραμμική βελτιστοποίηση (χωρίς περιορισμούς και περιορισμούς)
  • επιλέγει τον κατάλληλο αλγόριθμο σε σχέση με το πρόβλημα βελτιστοποίησης.
Γενικές Ικανότητες
  • Αυτόνομη εργασία
  • Λήψη αποφάσεων
  • Προσαρμογή σε νέες καταστάσεις
  • Προαγωγή της ελεύθερης, δημιουργικής και επαγωγικής σκέψης
  • Σύνθεση δεδομένων και πληροφοριών, με τη χρήση και των απαραίτητων τεχνολογιών

Περιεχόμενο Μαθήματος

Βελτιστοποίηση με και χωρίς περιορισμούς: Πολλαπλασιαστές Lagrange, συνθήκες KarushKuhn-Tucker. Μέθοδοι βελτιστοποίησης για προβλήματα χωρίς περιορισμούς: Line Search, Trust Region, Conjugate Gradient, Newton, Quasi-Newton methods. Μέθοδοι βελτιστοποίησης για προβλήματα με περιορισμούς: Quadratic Programming, Penalty Barrier και Augmented Lagrangian Methods.

Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση

Τρόπος Παράδοσης Πρόσωπο με πρόσωπο
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών
  • Χρήση Lindo/Lingo Software, Mathematica/ Matlab
  • Χρήση Τ.Π.Ε. στην Επικοινωνία
Οργάνωση Διδασκαλίας
Δραστηριότητα Φόρτος Εργασίας Εξαμήνου
Διαλέξεις 39
Αυτοτελής Μελέτη 70
Ασκήσεις Πεδίου (7-8 σύνολα ασκήσεων) 78.5
Σύνολο Μαθήματος 187.5
Αξιολόγηση Φοιτητών
  • Γραπτές εργασίες (30%)
  • Γραπτή τελική εξέταση (70%)

Συνιστώμενη Βιβλιογραφία

  • Anderson, T. W. (2003). An Introduction to Multivariate Statistical Analysis. 3rd Edition. Wiley.
  • Fang, K.T., and Zhang, Y.T.. (1990). Generalized Multivariate Analysis. Springer. Berlin.
  • Flury, B. (1997). A first course in multivariate statistics. Springer.
  • Johnson, R. A. and Wichern, D. W. (2006). Applied Multivariate Statistical Analysis. Prentice Hall.
  • Mardia, K. V., Kent, J. T. and Bibby, J. M. (1979). Multivariate Analysis. Academic Press.
  • Muirhead, R. J. (1982). Aspects of Multivariate Statistical Theory. Wiley.
  • Rencher, A. C. (1995). Methods of Multivariate Analysis. Wiley.
  • Srivastava, M. S. (2002). Methods of multivariate statistics. Wiley.