Μη Γραμμικός Προγραμματισμός (ΣEE7)
Από Wiki Τμήματος Μαθηματικών
Αναθεώρηση ως προς 08:57, 25 Αυγούστου 2022 από τον Mathwikiadmin (συζήτηση | συνεισφορές) (Νέα σελίδα με 'Περιγράμματα Μεταπτυχιακών Μαθημάτων - [https://math.uoi.gr Τμήμα Μαθηματικών] === Γενικά === {| class="wikitable" |- ! Σχολή | Σχολή Θετικών Επιστημών |- ! Τμήμα | Τμήμα Μαθηματικών |- ! Επίπεδο Σπουδών | Μεταπτυχιακό |- ! Κωδικός Μαθήματος | ΣEE7 |- ! Εξάμηνο | 2 |- ! Τίτλος Μαθήματος | Μ...')
Περιγράμματα Μεταπτυχιακών Μαθημάτων - Τμήμα Μαθηματικών
Γενικά
Σχολή | Σχολή Θετικών Επιστημών |
---|---|
Τμήμα | Τμήμα Μαθηματικών |
Επίπεδο Σπουδών | Μεταπτυχιακό |
Κωδικός Μαθήματος | ΣEE7 |
Εξάμηνο | 2 |
Τίτλος Μαθήματος | ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ |
Αυτοτελείς Διδακτικές Δραστηριότητες | Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 6) |
Τύπος Μαθήματος | Ειδικότητας |
Προαπαιτούμενα Μαθήματα | |
Γλώσσα Διδασκαλίας και Εξετάσεων | Ελληνική |
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus | Ναι (στην Αγγλική γλώσσα) |
Ηλεκτρονική Σελίδα Μαθήματος (URL) | Δείτε το eCourse, το Σύστημα Διαχείρισης Μάθησης του Πανεπιστημίου Ιωαννίνων. |
Μαθησιακά Αποτελέσματα
Μαθησιακά Αποτελέσματα | Στόχος του μαθήματος είναι η παρουσίαση των βασικών αρχών του μη γραμμικού προγραμματισμού, σε προβλήματα βελτιστοποίησης με και χωρίς περιορισμούς. Με την επιτυχή ολοκλήρωση του μαθήματος ο φοιτητής /τρια θα είναι σε θέση να:
|
---|---|
Γενικές Ικανότητες |
|
Περιεχόμενο Μαθήματος
Βελτιστοποίηση με και χωρίς περιορισμούς: Πολλαπλασιαστές Lagrange, συνθήκες KarushKuhn-Tucker. Μέθοδοι βελτιστοποίησης για προβλήματα χωρίς περιορισμούς: Line Search, Trust Region, Conjugate Gradient, Newton, Quasi-Newton methods. Μέθοδοι βελτιστοποίησης για προβλήματα με περιορισμούς: Quadratic Programming, Penalty Barrier και Augmented Lagrangian Methods.
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
Τρόπος Παράδοσης | Πρόσωπο με πρόσωπο | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών |
| ||||||||||
Οργάνωση Διδασκαλίας |
| ||||||||||
Αξιολόγηση Φοιτητών |
|
Συνιστώμενη Βιβλιογραφία
- Anderson, T. W. (2003). An Introduction to Multivariate Statistical Analysis. 3rd Edition. Wiley.
- Fang, K.T., and Zhang, Y.T.. (1990). Generalized Multivariate Analysis. Springer. Berlin.
- Flury, B. (1997). A first course in multivariate statistics. Springer.
- Johnson, R. A. and Wichern, D. W. (2006). Applied Multivariate Statistical Analysis. Prentice Hall.
- Mardia, K. V., Kent, J. T. and Bibby, J. M. (1979). Multivariate Analysis. Academic Press.
- Muirhead, R. J. (1982). Aspects of Multivariate Statistical Theory. Wiley.
- Rencher, A. C. (1995). Methods of Multivariate Analysis. Wiley.
- Srivastava, M. S. (2002). Methods of multivariate statistics. Wiley.