Άλγεβρα II (ΑΛ2)

Από Wiki Τμήματος Μαθηματικών
Αναθεώρηση ως προς 10:42, 26 Αυγούστου 2022 από τον Mathwikiadmin (συζήτηση | συνεισφορές) (Νέα σελίδα με 'Περιγράμματα Μεταπτυχιακών Μαθημάτων - [https://math.uoi.gr Τμήμα Μαθηματικών] === Γενικά === {| class="wikitable" |- ! Σχολή | Σχολή Θετικών Επιστημών |- ! Τμήμα | Τμήμα Μαθηματικών |- ! Επίπεδο Σπουδών | Μεταπτυχιακό |- ! Κωδικός Μαθήματος | ΑΛ2 |- ! Εξάμηνο | 2 |- ! Τίτλος Μαθήματος | ΑΛ...')
(διαφορά) ← Παλαιότερη αναθεώρηση | Τελευταία αναθεώρηση (διαφορά) | Νεότερη αναθεώρηση → (διαφορά)

Περιγράμματα Μεταπτυχιακών Μαθημάτων - Τμήμα Μαθηματικών

Γενικά

Σχολή Σχολή Θετικών Επιστημών
Τμήμα Τμήμα Μαθηματικών
Επίπεδο Σπουδών Μεταπτυχιακό
Κωδικός Μαθήματος ΑΛ2
Εξάμηνο 2
Τίτλος Μαθήματος ΑΛΓΕΒΡΑ ΙΙ
Αυτοτελείς Διδακτικές Δραστηριότητες Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 7.5)
Τύπος Μαθήματος Γενικού υποβάθρου
Προαπαιτούμενα Μαθήματα
Γλώσσα Διδασκαλίας και Εξετάσεων Ελληνική
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus Ναι (στην Αγγλική γλώσσα)
Ηλεκτρονική Σελίδα Μαθήματος (URL) Δείτε το eCourse, το Σύστημα Διαχείρισης Μάθησης του Πανεπιστημίου Ιωαννίνων.

Μαθησιακά Αποτελέσματα

Μαθησιακά Αποτελέσματα Ο βασικός σκοπός του μαθήματος είναι η εισαγωγή στα κυριότερα εργαλεία και τις μεθόδους της Μεταθετικής Άλγεβρας, και στις άμεσες εφαρμογές της σε διάφορους κλάδους των Μαθηματικών, με περισσότερο αξιοσημείωτο τον κλάδο της Αλγεβρικής Γεωμετρίας, και σε συναφείς επιστήμες. Στο τέλος τού μαθήματος περιμένουμε από τον φοιτητή να έχει κατανοήσει τους ορισμούς και τα βασικά θεωρήματα τα οποία αναλύονται στο μάθημα, να έχει κατανοήσει πως αυτά εφαρμόζονται σε διακεκριμένα παραδείγματα αλγεβρικής και γεωμετρικής προέλευσης, να είναι σε θέση να τα εφαρμόζει για την εξαγωγή νέων στοιχειωδών συμπερασμάτων σε διάφορα πεδία, και τέλος να μπορεί να εκτελεί ορισμένους (όχι τόσο προφανείς) υπολογισμούς.
Γενικές Ικανότητες Το μάθημα αποσκοπεί στο να μπορεί ο πτυχιούχος να αποκτήσει την ικανότητα στην ανάλυση και σύνθεση βασικών γνώσεων της Μεταθετικής Άλγεβρας, η οποία αποτελεί ένα σημαντικό μέρος των σύγχρονων Μαθηματικών και ιδιαίτερα της Άλγεβρας και της Γεωμετρίας. Ερχόμενος ο πτυχιούχος για πρώτη φορά σε επαφή με έννοιες της Μεταθετικής Άλγεβρας και των εφαρμογών της στην Αλγεβρική Γεωμετρία, προάγεται η δημιουργική, αναλυτική και επαγωγική σκέψη του, και η ικανότητά του να εφαρμόζει αφηρημένες γνώσεις σε διάφορες περιοχές συναφών επιστημών.

Περιεχόμενο Μαθήματος

  • Στοιχεία Αλγεβρικής Γεωμετρίας.
  • Διάσταση.
  • Θεώρημα κυρίων ιδεωδών του Krull.
  • Κανονικές ακολουθίες.
  • Βάθος.
  • Δακτύλιοι Cohen-Macaulay.
  • Δακτύλιοι Gorenstein.
  • Ελεύθερες επιλύσεις προτύπων.
  • Συναρτήσεις του Hilbert.

Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση

Τρόπος Παράδοσης Πρόσωπο με πρόσωπο
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών
Οργάνωση Διδασκαλίας
Δραστηριότητα Φόρτος Εργασίας Εξαμήνου
Διαλέξεις 39
Μελέτη της θεωρίας 78
Επίλυση ασκήσεων 70.5
Σύνολο Μαθήματος 187.5
Αξιολόγηση Φοιτητών Η αξιολόγηση βασίζεται συνδυαστικά στις επιδόσεις του μεταπτυχιακού φοιτητή σε:
  • Εβδομαδιαίες εργασίες,
  • Παρουσιάσεις κατά τη διάρκεια του εξαμήνου,
  • Εργασία στο τέλος του μαθήματος,
  • Γραπτή εξέταση στο τέλος των μαθημάτων στα Ελληνικά με ερωτήσεις και θέματα ανάπτυξης και επίλυσης προβλημάτων.

Συνιστώμενη Βιβλιογραφία

  • J.P. Serre: “Linear Representations of Finite Groups”, Springer-Verlag, (1977).
  • B. Steinberg: “Representation Theory of Finite Groups: An Introductory Approach”, Springer, (2012).
  • C.W. Curtis and V. Reiner: “Methods of Representation Theory: With Applications to Finite Groups and Orders”, Wiley, (1981).
  • P. Etingof et al: “Introduction to Representation Theory”, Student Mathematical Library 59, AMS, (2011).
  • J.L. Alperin and R.B. Bell: “Groups and Representations”, Springer (1995).
  • M. Burrow: “Representation Theory of Finite Groups”, Academic Press, (1965).
  • M. Liebeck and G. James: “Representations and Characters of Groups”, CUP, (2001).