Υπολογιστική Στατιστική Ανάλυση (ΣEE12)

Από Wiki Τμήματος Μαθηματικών
Αναθεώρηση ως προς 17:35, 26 Αυγούστου 2022 από τον Mathwikiadmin (συζήτηση | συνεισφορές) (Νέα σελίδα με 'Περιγράμματα Μεταπτυχιακών Μαθημάτων - [https://math.uoi.gr Τμήμα Μαθηματικών] === Γενικά === {| class="wikitable" |- ! Σχολή | Σχολή Θετικών Επιστημών |- ! Τμήμα | Τμήμα Μαθηματικών |- ! Επίπεδο Σπουδών | Μεταπτυχιακό |- ! Κωδικός Μαθήματος | ΣEE12 |- ! Εξάμηνο | 2 |- ! Τίτλος Μαθήματος | Υ...')
(διαφορά) ← Παλαιότερη αναθεώρηση | Τελευταία αναθεώρηση (διαφορά) | Νεότερη αναθεώρηση → (διαφορά)

Περιγράμματα Μεταπτυχιακών Μαθημάτων - Τμήμα Μαθηματικών

Γενικά

Σχολή Σχολή Θετικών Επιστημών
Τμήμα Τμήμα Μαθηματικών
Επίπεδο Σπουδών Μεταπτυχιακό
Κωδικός Μαθήματος ΣEE12
Εξάμηνο 2
Τίτλος Μαθήματος ΥΠΟΛΟΓΙΣΤΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
Αυτοτελείς Διδακτικές Δραστηριότητες Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 7.5)
Τύπος Μαθήματος Μάθημα Ειδίκευσης
Προαπαιτούμενα Μαθήματα
Γλώσσα Διδασκαλίας και Εξετάσεων Ελληνική
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus Ναι (στην Αγγλική γλώσσα)
Ηλεκτρονική Σελίδα Μαθήματος (URL) Δείτε το eCourse, το Σύστημα Διαχείρισης Μάθησης του Πανεπιστημίου Ιωαννίνων.

Μαθησιακά Αποτελέσματα

Μαθησιακά Αποτελέσματα Οι φοιτητές μετά την επιτυχή παρακολούθηση αυτού του μαθήματος θα πρέπει να είναι σε θέση να:
  • εφαρμόζουν τις συνηθέστερες μεθόδους υπολογιστικής στατιστικής
  • χρησιμοποιούν την R άλλα και άλλα στατιστικά προγράμματα για τον παραπάνω σκοπό
  • χρησιμοποιούν διαφορετικές μεθόδους επίλυσης ενός προβλήματος βελτιστοποίησης
  • εφαρμόζουν υπολογιστικούς αλγορίθμους στο πλαίσιο των γραμμικών μοντέλων
  • χρησιμοποιούν μεθόδους Monte Carlo στην επίλυση στατιστικών προβλημάτων
  • σχεδιάζουν και να υλοποιούν μια μελέτη προσομοίωσης και να ερμηνεύουν ορθά τα εξαγόμενα συμπεράσματα,
  • χειρίζονται ελλιπή δεδομένα
Γενικές Ικανότητες
  • Αυτόνομη εργασία
  • Ομαδική εργασία σε κάποιες περιπτώσεις
  • Λήψη αποφάσεων
  • Προαγωγή της ελεύθερης, δημιουργικής και επαγωγικής σκέψης
  • Σύνθεση δεδομένων και πληροφοριών.

Περιεχόμενο Μαθήματος

Το μάθημα καλύπτει τις ακόλουθες ενότητες, με χρήση κυρίως του SPSS και της R: δημιουργία τυχαίων μεταβλητών, permutation tests, bootstrap και jackknife, cross validation, kernel density estimation, local regression, Gibbs sampling, Metropolis-Hastings αλγόριθμος, importance sampling, slice sampling. Χειρισμός ελλιπών τιμών.

Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση

Τρόπος Παράδοσης Πρόσωπο με πρόσωπο στο εργαστήριο του Τμήματος
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών Χρήση Τ.Π.Ε. στην επικοινωνία με τους φοιτητές καθώς και στην παράδοση εργασιών
Οργάνωση Διδασκαλίας
Δραστηριότητα Φόρτος Εργασίας Εξαμήνου
Διαλέξεις -Εργαστήριο 39
Αυτοτελής Μελέτη 78
Επίλυση ασκήσεων-εργασίες 70.5
Σύνολο Μαθήματος 187.5
Αξιολόγηση Φοιτητών Γραπτή τελική εξέταση στα Ελληνικά (σε περίπτωση φοιτητών Erasmus στην Αγγλική γλώσσα) η οποία περιλαμβάνει την ανάλυση τόσο πραγματικών όσο και εκπαιδευτικών συνόλων δεδομένων. Κατά τη διάρκεια του εξαμήνου δίνονται υποχρεωτικές, συνήθως ατομικές, εργασίες, οι οποίες συνυπολογίζονται στον τελικό βαθμό.

Συνιστώμενη Βιβλιογραφία

  • Davison, A. C., Hinkley, D. V., (1997). Bootstrap methods and their application. Cambridge University Press.
  • Rizzo, M. L., (2007). Statistical computing with R. Chapman & Hall/CRC.
  • Robert, C. P., Casella, G., (2009). Introducing Monte Carlo methods with R. Springer Verlag.
  • Gentle, J. E., (2009). Computational Statistics, Springer.
  • Givens, G.H. and Hoeting, J.A., (2012). Computational Statistics, Wiley.
  • [Περιοδικό / Journal] Statistics and Computing
  • [Περιοδικό / Journal] Computational Statistics.
  • [Περιοδικό / Journal] Computational Statistics & Data Analysis.