Βιομαθηματικά (ΜΑΕ546A): Διαφορά μεταξύ των αναθεωρήσεων
Από Wiki Τμήματος Μαθηματικών
Χωρίς σύνοψη επεξεργασίας |
(→Γενικά) |
||
Γραμμή 27: | Γραμμή 27: | ||
| Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 6) | | Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 6) | ||
|- | |- | ||
! Τύπος Μαθήματος | ! [[Τύποι Προπτυχιακών Μαθημάτων|Τύπος Μαθήματος]] | ||
| | | Ειδίκευσης | ||
|- | |- | ||
! Προαπαιτούμενα Μαθήματα | ! Προαπαιτούμενα Μαθήματα |
Αναθεώρηση της 05:09, 12 Μαΐου 2023
- English version
- Περιγράμματα Προπτυχιακών Μαθημάτων
- Τροποποίηση Περιγράμματος (η δυνατότητα αυτή απευθύνεται αποκλειστικά στα μέλη ΔΕΠ του Τμήματος)
Γενικά
Σχολή | Σχολή Θετικών Επιστημών |
---|---|
Τμήμα | Τμήμα Μαθηματικών |
Επίπεδο Σπουδών | Προπτυχιακό |
Κωδικός Μαθήματος | MAE546A |
Εξάμηνο | 5 |
Τίτλος Μαθήματος | ΒΙΟΜΑΘΗΜΑΤΙΚΑ |
Αυτοτελείς Διδακτικές Δραστηριότητες | Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 6) |
Τύπος Μαθήματος | Ειδίκευσης |
Προαπαιτούμενα Μαθήματα | |
Γλώσσα Διδασκαλίας και Εξετάσεων | Ελληνική |
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus | Ναι (στην Αγγλική γλώσσα) |
Ηλεκτρονική Σελίδα Μαθήματος (URL) | Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων. |
Μαθησιακά Αποτελέσματα
Μαθησιακά Αποτελέσματα | Το μάθημα είναι μια εισαγωγή στις βασικές έννοιες των Βιομαθηματικών. Με την επιτυχή ολοκλήρωση του μαθήματος ο φοιτητής ή η φοιτήτρια θα είναι σε θέση να:
|
---|---|
Γενικές Ικανότητες |
Το μάθημα αποσκοπεί στο να μπορεί ο πτυχιούχος αν αποκτήσει την ικανότητα ανάλυσης και σύνθεσης βασικών γνώσεων των βιομαθηματικών και γενικότερα των εφαρμοσμένων μαθηματικών. Ο πτυχιούχος θα μπορεί να αντιμετωπίσει με αυτό τον τρόπο προβλήματα των σύγχρονων μαθηματικών δίνοντας του τη δυνατότητα να εργαστεί σε ένα διεθνές διεπιστημονικό περιβάλλον.
|
Περιεχόμενο Μαθήματος
- Επανάληψη σε βασικές έννοιες της Ανάλυσης, της Άλγεβρας και των Διαφορικών Εξισώσεων.
- Διαφορικές εξισώσεις κίνησης των βιορευστών.
- Εφαρμογές της μαθηματικής μοντελοποίησης βιορευστών στο ανθρώπινο σώμα και στο αρτηριακό σύστημα.
- Αναλυτικές και αριθμητικές τεχνικές για την επίλυση των διαφορικών εξισώσεων που περιγράφουν τις ροές βιορευστών.
- Πολλαπλότητες και βάσεις Groebner, Tropical geometry, The Polytope Propagation Algorithm.
- Εφαρμογές της Αλγεβρικής Στατιστικής στην Βιολογία.
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
Τρόπος Παράδοσης | Στην τάξη | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών |
| ||||||||||
Οργάνωση Διδασκαλίας |
| ||||||||||
Αξιολόγηση Φοιτητών |
|
Συνιστώμενη Βιβλιογραφία
Δείτε την υπηρεσία Εύδοξος ή το τοπικό αποθετήριο του Τμήματος Μαθηματικών για τα παρεχόμενα συγγράμματα ανά ακαδημαϊκό έτος. Συγγράμματα και άλλες πηγές εκτός της υπηρεσίας Εύδοξος:
- Algebraic Statistics for Computational Biology, L. Pachter, B. Sturmfels, 2005, Editor: Cambridge University Press
- Cardiovascular Mathematics, Modeling and simulation of the circulatory system, Formaggia L., Quarteroni A., Veneziani A., 2009, Editor: Springer