Αριθμητική Ανάλυση (ΜΑΕ642): Διαφορά μεταξύ των αναθεωρήσεων

Από Wiki Τμήματος Μαθηματικών
(Νέα σελίδα με 'Περιγράμματα Προπτυχιακών Μαθημάτων - [https://math.uoi.gr Τμήμα Μαθηματικών] === Γενικά === {| class="wikitable" |- ! Σχολή | Σχολή Θετικών Επιστημών |- ! Τμήμα | Τμήμα Μαθηματικών |- ! Επίπεδο Σπουδών | Προπτυχιακό |- ! Κωδικός Μαθήματος | MAE642 |- ! Εξάμηνο | 6 |- ! Τίτλος Μαθήματος | ΑΡΙ...')
 
Χωρίς σύνοψη επεξεργασίας
 
(6 ενδιάμεσες αναθεωρήσεις από τον ίδιο χρήστη δεν εμφανίζεται)
Γραμμή 1: Γραμμή 1:
[[Περιγράμματα Προπτυχιακών Μαθημάτων]] - [https://math.uoi.gr Τμήμα Μαθηματικών]
* [[Numerical Analysis (MAE642)|English version]]
{{Course-UnderGraduate-Top-GR}}
{{Menu-OnAllPages-GR}}


=== Γενικά ===
=== Γενικά ===
Γραμμή 26: Γραμμή 28:
| Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 6)
| Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 6)
|-
|-
! Τύπος Μαθήματος
! [[Τύποι Προπτυχιακών Μαθημάτων|Τύπος Μαθήματος]]
| Ειδικού Υποβάθρου
| Ειδίκευσης
|-
|-
! Προαπαιτούμενα Μαθήματα
! Προαπαιτούμενα Μαθήματα
Γραμμή 39: Γραμμή 41:
|-
|-
! Ηλεκτρονική Σελίδα Μαθήματος (URL)
! Ηλεκτρονική Σελίδα Μαθήματος (URL)
| Δείτε το [https://ecourse.uoi.gr/ eCourse], το Σύστημα Διαχείρισης Μάθησης του Πανεπιστημίου Ιωαννίνων.
| Δείτε το [https://ecourse.uoi.gr/ eCourse], την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων.
|}
|}



Τελευταία αναθεώρηση της 10:05, 15 Ιουνίου 2023

Γενικά

Σχολή Σχολή Θετικών Επιστημών
Τμήμα Τμήμα Μαθηματικών
Επίπεδο Σπουδών Προπτυχιακό
Κωδικός Μαθήματος MAE642
Εξάμηνο 6
Τίτλος Μαθήματος ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ
Αυτοτελείς Διδακτικές Δραστηριότητες Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 6)
Τύπος Μαθήματος Ειδίκευσης
Προαπαιτούμενα Μαθήματα
Γλώσσα Διδασκαλίας και Εξετάσεων Ελληνική
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus Ναι (στην Αγγλική γλώσσα)
Ηλεκτρονική Σελίδα Μαθήματος (URL) Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων.

Μαθησιακά Αποτελέσματα

Μαθησιακά Αποτελέσματα Μετά την επιτυχή ολοκλήρωση του μαθήματος, οι φοιτητές θα είναι σε θέση:
  • να κατανοήσουν τη βασική θεωρία συνόλων ορθογώνιων πολυωνύμων,
  • να γνωρίζουν και να μπορούν να εφαρμόσουν τις διδασκόμενες μεθόδους Αριθμητικής Ολοκλήρωσης,
  • να γνωρίζουν και να μπορούν να εφαρμόσουν τις διδασκόμενες μεθόδους αριθμητικής επίλυσης εξισώσεων και μη γραμμικών συστημάτων,
  • να υλοποιούν τις παραπάνω μεθόδους με προγράμματα στον υπολογιστή.
Γενικές Ικανότητες
  • Αναζήτηση, ανάλυση και σύνθεση δεδομένων και πληροφοριών, με τη χρήση και των απαραίτητων τεχνολογιών
  • Προσαρμογή σε νέες καταστάσεις
  • Άσκηση κριτικής και αυτοκριτικής
  • Προαγωγή της ελεύθερης, δημιουργικής και επαγωγικής σκέψης.

Περιεχόμενο Μαθήματος

Σύνολα Ορθογωνίων Πολυωνύμων: Legendre, Chebyshev. Αριθμητική Ολοκλήρωση: Τύποι Newton- Cotes, Chebyshev, Gauss-Legendre, Gauss-Chebyshev. Αριθμητική Επίλυση Εξισώσεων: Μέθοδος Νεύτωνα, Μέθοδος Τέμνουσας, Μέθοδοι Aitken-Steffensen. Αριθμητική Επίλυση μη Γραμμικών Συστημάτων: Μέθοδος Νεύτωνα.

Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση

Τρόπος Παράδοσης Στην τάξη
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών
Οργάνωση Διδασκαλίας
Δραστηριότητα Φόρτος Εργασίας Εξαμήνου
Διαλέξεις (13Χ3) 39
Αυτοτελής Μελέτη 78
Επίλυση Ασκήσεων - εργασίες 33
Σύνολο Μαθήματος 150
Αξιολόγηση Φοιτητών Γραπτή εξέταση

Συνιστώμενη Βιβλιογραφία

Δείτε την υπηρεσία Εύδοξος ή το τοπικό αποθετήριο του Τμήματος Μαθηματικών για τα παρεχόμενα συγγράμματα ανά ακαδημαϊκό έτος. Συγγράμματα και άλλες πηγές εκτός της υπηρεσίας Εύδοξος:

  • "Introduction to Numerical Analysis". Akrivis G.D., Dougalis B.A, Crete University Press, 4th Edition, 2010.