Αριθμητική Επίλυση Συνήθων Διαφορικών Εξισώσεων (ΜΑΕ744): Διαφορά μεταξύ των αναθεωρήσεων
Από Wiki Τμήματος Μαθηματικών
(Νέα σελίδα με 'Περιγράμματα Προπτυχιακών Μαθημάτων - [https://math.uoi.gr Τμήμα Μαθηματικών] === Γενικά === {| class="wikitable" |- ! Σχολή | Σχολή Θετικών Επιστημών |- ! Τμήμα | Τμήμα Μαθηματικών |- ! Επίπεδο Σπουδών | Προπτυχιακό |- ! Κωδικός Μαθήματος | MAE744 |- ! Εξάμηνο | 7 |- ! Τίτλος Μαθήματος | ΑΡΙ...') |
Χωρίς σύνοψη επεξεργασίας |
||
(11 ενδιάμεσες αναθεωρήσεις από τον ίδιο χρήστη δεν εμφανίζεται) | |||
Γραμμή 1: | Γραμμή 1: | ||
[[ | * [[Numerical Solution of Ordinary Differential Equations (MAE744)|English version]] | ||
{{Course-UnderGraduate-Top-GR}} | |||
{{Menu-OnAllPages-GR}} | |||
=== Γενικά === | === Γενικά === | ||
Γραμμή 26: | Γραμμή 28: | ||
| Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 6) | | Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 6) | ||
|- | |- | ||
! Τύπος Μαθήματος | ! [[Τύποι Προπτυχιακών Μαθημάτων|Τύπος Μαθήματος]] | ||
| | | Ειδίκευσης | ||
|- | |- | ||
! Προαπαιτούμενα Μαθήματα | ! Προαπαιτούμενα Μαθήματα | ||
Γραμμή 39: | Γραμμή 41: | ||
|- | |- | ||
! Ηλεκτρονική Σελίδα Μαθήματος (URL) | ! Ηλεκτρονική Σελίδα Μαθήματος (URL) | ||
| Δείτε το [https://ecourse.uoi.gr/ eCourse], | | Δείτε το [https://ecourse.uoi.gr/ eCourse], την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων. | ||
|} | |} | ||
Γραμμή 47: | Γραμμή 49: | ||
|- | |- | ||
! Μαθησιακά Αποτελέσματα | ! Μαθησιακά Αποτελέσματα | ||
| Το μάθημα είναι μια εισαγωγή στις βασικές μεθόδους | | Το μάθημα είναι μια εισαγωγή στις βασικές μεθόδους αριθμητικής επίλυσης προβλημάτων αρχικών τιμών για Συνήθεις Διαφορικές Εξισώσεις (Σ.Δ.Ε.). Μετά την επιτυχή ολοκλήρωση του μαθήματος, οι φοιτητές θα μπορούν να: | ||
# περιγράφουν τα βασικά χαρακτηριστικά των μονοβηματικών και πολυβηματικών μεθόδων και να αναγνωρίζουν τις μεταξύ τους διαφορές. | |||
# εφαρμόζουν μια ποικιλία τεχνικών για την κατασκευή μονοβηματικών και πολυβηματικών αριθμητικών μεθόδων για τη λύση Σ.Δ.Ε. | |||
# να εφαρμόζουν θεωρητικές τεχνικές της αριθμητικής ανάλυσης και να αποδεικνύουν συνέπεια, ευστάθεια, και σύγκλιση των μεθόδων. | |||
# να γνωρίζουν για βασικές μεθόδους τη βέλτιστη τάξη ακρίβειάς τους καθώς και τους περιορισμούς που μπορεί να απαιτούνται στις παραμέτρους διακριτοποίησης με στόχο την εξασφάλιση της ευστάθειάς τους. | |||
# να υλοποιούν, χρησιμοποιώντας ελεύθερο λογισμικό (π.χ. Python, Octave), άμεσες και πεπλεγμένες αριθμητικές μεθόδους για την λύση Σ.Δ.Ε. και να μπορούν να υπολογίσουν την πειραματική τάξη σύγκλισής τους. | |||
# να γράφουν κώδικα σε Python ή Octave για την αριθμητική προσέγγιση της λύσης μαθηματικών μοντέλων Σ.Δ.Ε. που προέρχονται από διάφορες επιστημονικές περιοχές. | |||
|- | |- | ||
! Γενικές Ικανότητες | ! Γενικές Ικανότητες | ||
| | | | ||
* Αναζήτηση, ανάλυση και σύνθεση δεδομένων και πληροφοριών, με τη χρήση και των απαραίτητων τεχνολογιών. | |||
* Προσαρμογή σε νέες καταστάσεις. | |||
* Λήψη αποφάσεων. | |||
* Ομαδική εργασία. | |||
* Εργασία σε διεπιστημονικό περιβάλλον. | |||
* Προαγωγή της ελεύθερης, δημιουργικής και επαγωγικής σκέψης. | |||
* Προαγωγή της αναλυτικής και συνθετικής σκέψης. | |||
|} | |} | ||
=== Περιεχόμενο Μαθήματος === | === Περιεχόμενο Μαθήματος === | ||
* Ανασκόπηση βασικών αποτελεσμάτων ύπαρξης και μοναδικότητας λύσης για προβλήματα αρχικών τιμών για Σ.Δ.Ε. | |||
* Αριθμητική επίλυση του προβλήματος αρχικών τιμών για Σ.Δ.E. με την άμεση και την πεπλεγμένη μέθοδο του Euler. | |||
* Συνέπεια, ευστάθεια, και σύγκλιση των μεθόδων Runge-Kutta. | |||
* Συνέπεια, ευστάθεια, και σύγκλιση των πολυβηματικών μεθόδων. | |||
* Εφαρμογές σε προβλήματα από Φυσική και Βιολογία. | |||
=== Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση === | === Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση === | ||
Γραμμή 66: | Γραμμή 81: | ||
|- | |- | ||
! Τρόπος Παράδοσης | ! Τρόπος Παράδοσης | ||
| | | Πρόσωπο με πρόσωπο. | ||
|- | |- | ||
! Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών | ! Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών | ||
| | | | ||
* Xρήση ταμπλέτας για την παράδοση διδασκαλίας. Οι σημειώσεις από την τάξη γίνονται διαθέσιμες σε μορφή pdf στο ecourse. | |||
* Παροχή υλικού μελέτης μέσω του ecourse. | |||
* Παροχή πρότυπων λύσεων κάποιων ασκήσεων σε μορφή podcast. | |||
* Επικοινωνία με τους φοιτητές χρησιμοποιώντας e-mail, και τις πλατφόρμες ecourse και MTeams. | |||
* Εργαστήριο προγραμματισμού (σε Octave ή Python) με αντικείμενο την υλοποίηση αλγορίθμων σε ηλεκτρονικό υπολογιστή. | |||
|- | |- | ||
! Οργάνωση Διδασκαλίας | ! Οργάνωση Διδασκαλίας | ||
Γραμμή 81: | Γραμμή 101: | ||
|- | |- | ||
| Αυτοτελής Μελέτη | | Αυτοτελής Μελέτη | ||
| | | 75 | ||
|- | |||
| Καθοδηγούμενη μελέτη ασκήσεων | |||
| 6 | |||
|- | |- | ||
| | | Μη καθοδηγούμενη μελέτη ασκήσεων | ||
| | | 30 | ||
|- | |- | ||
| Σύνολο Μαθήματος | | Σύνολο Μαθήματος | ||
Γραμμή 92: | Γραμμή 115: | ||
! Αξιολόγηση Φοιτητών | ! Αξιολόγηση Φοιτητών | ||
| | | | ||
* | * Εργαστηριακές ασκήσεις (σε ομάδες των δύο) με προφορική εξέταση (Βάρος 30%, καλύπτει τα μαθησιακά αποτελέσματα 4-6). | ||
* Γραπτή εξέταση στο τέλος του εξαμήνου (Βάρος 70%, καλύπτει τα μαθησιακά αποτελέσματα 1-4). | |||
* Γραπτή εξέταση στο τέλος του εξαμήνου | |||
|} | |} | ||
Τελευταία αναθεώρηση της 10:08, 15 Ιουνίου 2023
- English version
- Περιγράμματα Προπτυχιακών Μαθημάτων
- Τροποποίηση Περιγράμματος (η δυνατότητα αυτή απευθύνεται αποκλειστικά στα μέλη ΔΕΠ του Τμήματος)
- Τμήμα Μαθηματικών
- Αποθήκευση ως PDF ή Εκτύπωση (για αποθήκευση ως PDF, κάντε την σχετική επιλογή στη λίστα εκτυπωτών που θα εμφανιστεί)
Γενικά
Σχολή | Σχολή Θετικών Επιστημών |
---|---|
Τμήμα | Τμήμα Μαθηματικών |
Επίπεδο Σπουδών | Προπτυχιακό |
Κωδικός Μαθήματος | MAE744 |
Εξάμηνο | 7 |
Τίτλος Μαθήματος | ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΣΥΝΗΘΩΝ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ |
Αυτοτελείς Διδακτικές Δραστηριότητες | Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 6) |
Τύπος Μαθήματος | Ειδίκευσης |
Προαπαιτούμενα Μαθήματα | |
Γλώσσα Διδασκαλίας και Εξετάσεων | Ελληνική |
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus | Ναι (στην Αγγλική γλώσσα) |
Ηλεκτρονική Σελίδα Μαθήματος (URL) | Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων. |
Μαθησιακά Αποτελέσματα
Μαθησιακά Αποτελέσματα | Το μάθημα είναι μια εισαγωγή στις βασικές μεθόδους αριθμητικής επίλυσης προβλημάτων αρχικών τιμών για Συνήθεις Διαφορικές Εξισώσεις (Σ.Δ.Ε.). Μετά την επιτυχή ολοκλήρωση του μαθήματος, οι φοιτητές θα μπορούν να:
|
---|---|
Γενικές Ικανότητες |
|
Περιεχόμενο Μαθήματος
- Ανασκόπηση βασικών αποτελεσμάτων ύπαρξης και μοναδικότητας λύσης για προβλήματα αρχικών τιμών για Σ.Δ.Ε.
- Αριθμητική επίλυση του προβλήματος αρχικών τιμών για Σ.Δ.E. με την άμεση και την πεπλεγμένη μέθοδο του Euler.
- Συνέπεια, ευστάθεια, και σύγκλιση των μεθόδων Runge-Kutta.
- Συνέπεια, ευστάθεια, και σύγκλιση των πολυβηματικών μεθόδων.
- Εφαρμογές σε προβλήματα από Φυσική και Βιολογία.
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
Τρόπος Παράδοσης | Πρόσωπο με πρόσωπο. | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών |
| ||||||||||||
Οργάνωση Διδασκαλίας |
| ||||||||||||
Αξιολόγηση Φοιτητών |
|
Συνιστώμενη Βιβλιογραφία
Δείτε την υπηρεσία Εύδοξος ή το τοπικό αποθετήριο του Τμήματος Μαθηματικών για τα παρεχόμενα συγγράμματα ανά ακαδημαϊκό έτος. Συγγράμματα και άλλες πηγές εκτός της υπηρεσίας Εύδοξος:
- “Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations”, E. Hairer, & C. Lubich, Springer, 2010.
- “Numerical Methods for Ordinary Differential Equations: Initial Value Problems”, D.F. Griffiths, & D. J. Higham, Springer, 2010.